
/
i

/
J

October, 1965 Report ESL-R-248 i: copy 4G

CIRCAL: ON-LINE ANALYSIS OF ELECTRONIC NETWORKS

by

M.L. Dertouzos and C.W. Therrien

The preparation and publication of this report, including the research
on which it is based, was sponsored by the National Aeronautics and

Space Administration under Research Grant No. NsG-496 (Part),

M. I. T. Project DSR No. 9948. This report is published for informa-
tion purposes only and does not represent recommendations or con-

clusions of the sponsoring agency. Reproduction in whole or in part
is permitted for any purpose of the United States Government.

Electronic Systems iaboratory

Department of Electrical Engineering

Massachusetts Institute of Technology

Cambridge, Massachusetts 02139

ABSTRACT

i
A method is presented for the on-line simulation of electrical net-

works. The program generated from such a method can be used as

a powerful design tool in man-machine interaction. The method

presently treats networks consisting of linear and nonlinear resistors

as well as linear energy storage elements and can be extended to

nonlinear energy storage elements. The network is described to the

computer either by typing elements and nodes to which they connect

or by composing the network with a light pen on a cathode ray tube.

Voltage and current sources which may be arbitrary functions of
time excite the network, and the voltage across any pair of nodes as

a function of time is calculated and may be displayed.

The computer model for the network consists of storage-resistor

lists representing branches connected to other lists representing
nodes.

Solution is performed by decomposing the dynamic problem into a

n_nber of static problems for each time interval. Each static problem

yields the output and new state of the network on the basis of the

excitation and present state. State is determined by the energy-storage

elements, and solution of the amnesic problem is accomplished by

relaxing node voltages subject to the Kirchoff's current law constraint.

A computer program for use on the Project MAC compatible time-

sharing system was written to implement the foregoing method. This

preliminary program called CIKCAL-1 produced Z00 points of the time
solution for moderate sized networks {up to about 8 nodes and 12

branches) in the order of a few seconds.

iii

CHAPTERI

CHAPTER H

A.

B.

C.

Do

CHAPTER HI

A.

B.

C.

Do

CHAPTER IV

A.

B.

C.

D°

E.

CHAPTER V

A.

B.

CONTENTS

INTRODU C TION

METHOD OF ANALYSIS

INTRODUCTION

THE LINEAR AMNESIC PROBLEM

APPLICATION OF THE

RELAXATION METHOD TO

NONLINEAR AMNESIC NETWORKS

FORMULATION OF THE GENERAL

NON-AMNESIC PROBLEM

COMPUTER PROGRAM

INTRODUCTION

BASIC OPERATION

THE MODELING FLEX

1. General Considerations

2. Formation of the Data Structure

3. Conversion of the Dynamic Problem
to a Set of Static Problems

4. Solution of the Amnesic Problem

5. The Output Program

EXAMPLE OF OPERATION

RESULTS AND ANALYSIS

INTRODUCTION

ORIGINAL INVES TIGATIONS

INVESTIGATIONS OF THE GENERAL

CIRCUIT ANALYSIS PROGRAM

1.

2.

°

ADDITIONAL EXAMPLES

CONVERGENCE SPEED OF AMNESIC

SOLUTION

SUMMARY AND CONCLUSIONS

SUMMARY

CONCLUSIONS

page

Further Considerations of Convergence

Integration Techniques other than

Trapezoidal

Errors in Solution

1

7

7

8

16

18

23

23

23

26

26

27

33

34

41

41

47

47

47

54

54

55

64

65

67

75

75

75

V

APPENDIX A

APPENDIX B

lo

2.

APPENDIX C

APPENDIX D

1.

2.

REFERENCES

CONTENTS {Cont.)

PROOF OF THEOREM 2. I page 79

RELATION OF CURRENT ERROR TOLERANCE

TO TOLERANCE ON NODE POTENTIALS 83

STATEMENT OF PROBLEM 83

S OLU T ION 83

PROOF OF PARASITIC EIGENFUNCTIONS 85

PROGRAMS 89

A NOTE ON THE AED-0 LANGUAGE 89

PROGRAM FLOW CHARTS AND LISTINGS 90

i15

vi

LIST OF FIGURES

I. I.

2. I.

2.2.

2.3.

2.4.

2.5.

3.1.

3.2.

3.3.

3.4.

3.5.

3.8.

3.9.

3.10.

3.11.

3. 14.

3.15.

4. 2.

4. 3.

Step Response of an RC Network Computed

by CIRCAL- 1

Convergence Curve for Linear Amnesic Network

Geometrical Interpretation of V(m)

i-v Characteristic of a Typical Nonlinear Element

Trapezoidal Approximation to Area
under the Curve

Amnesic Models for Inductor and Capacitor

Organization of the Circuit Analysis Program

Simplified Flow Chart of the Main Supervisory

Program CIRCAL

Allowable Forms for Network Branches

Conversion of Networks to Acceptable Form

Blocks of Storage or "Beads" Comprising
the Data Structure

Typical Circuit to be Analyzed

Progressive Development of Data Structure

for the Circuit of Fig. 3.6

Flow Chart of the Subprogram TOPO which

Generates the Data Structure

Canonic Form for Network Branches

Conversion of Network Branch to Canonic Form

Flow Chart for Branch Conversion

(DYSOL Subprogram)

Looping Mechanism used in DYSOL

Application of Perturbation Method

to Data Structure (MNIP Subroutine)

Estimating the Lowest Upper Bound, El, On the
Convergence Curve

Estimating the Optimum Value of K

(MNIP Subroutine)

Flow Chart for .PRNT

Network used for Preliminary Investigation
of the Perturbation Method

Current Error and Node Voltages vs.

Iteration Number and K

Change in Current Error vs. Number of Iterations

for the Network of Fig. 4. 1

page 5

13

13

17

20

20

25

25

28

28

28

30

31

32

33

35

36

37

39

4O

42

43

48

5O

51

vii

4. 4.

4.7.

4.8.

4.9.

4.10.

4.13.

4. 14.

LIST OF FIGURES (Cont.)

Change in Current Error vs. Number of
Iterations for Various Values of the

Convergence Constant K

Linear Network with Nonlinear Branch

RC Network used for Investigation of

Convergence in the Nonamnesic Case

Convergence Curves for the Network of Fig. 4.6

Euler Methods of Integration

Computation of Step Response for a Series gc

Circuit using Closed-Form Euler and Trapezoidal

Methods of Integration

Step Response of Series RC Circuit Computed

using Simpson's Rule and Trapezoidal Method

Divergence of Second Order Integration Method

Errors Generated in Computing the Step Response

of the Series RC Network of Fig. 4. 10

Errors Generated Computing the Step Response

of the Series LC Circuit of Fig. 4.9

Error in the Step Response of the LC Circuit

of Fig. 4.9 using Trapezoidal Method

Sinusoidal Response of RC Network

Step Response of "Twin-T" Filter

Step Response of Third Order Butterworth Filter

Minimum-Phase RLC Network

Ladder Network used for Evaluating Number of

Iterations as a Function of Network Size 72

4.20. Convergence Speed of Relaxation Method 72

C.I. Series RC Circuit 85

D.I. Flow Chart for CIRCAL 93

D. 2. Flow Chart for T-OPO 95

D. 3. Flow Chart for INPT 99

D. 4. Flow Chart for DYSOL i01

D. 5. Flow Chart for MNIP 107

D.6. Flow Chart for PRNT 112

page 51

53

54

55

58

59

61

62

63

66

67

4.15. 68

4. 16. 69

4. 17. 70

4.18. 71

4.19.

viii

CHAPTER I

INTRODUCTION

Recent developments in large-scale, time- shared digital com-

puters .4 have created interest in computer-aided design of electrical

networks. Fundamental to the design of such networks is the ability

of the digital computer to analyze and the ability of the user to

synthesize by evaluating analytical results. This report presents

CIRCAL-1, the first version of an electrical-network simulation

program called CIRCAL (CIRCuit anALysis), the central aim of

which is analysis of unrestricted electrical networks. The terms

"analysis" and "simulation" are so commonly used that often they

are insufficient for conveying to the reader a clear picture of the

objectives of CIRCAL. In order to clarify these objectives, the

following description of a typical analysis session between user and

computer is presented.

The user, after identifying himself to the Compatible Time-Sharing

System (CTSS) types a few key words to load CIRCAL from his files

into computer memory. The command "input" is typed and the

program is now ready to accept a network description. Holding a

light-pen, the user points to a desired position on a cathode-ray-tube

_CRT) and presses appropriate push buttons for the type and orientation

of the electrical element that he wishes tO introduce. This element

appears on the CRT in conventional graphic-symbolic form and the

user types relevant information concerning the element, such as its

value, type, and tolerance. Repeating this process, the user

gradually composes on the CRT the entire network under consideration,

including sources of excitation. Subsequent typing of the command

"analiz" causes the computer to analyze and store the dynamic

response at all points of the network. Further commands may then

be typed, such as "disply v(i, j)" resulting in a graphical display

Superscripts refer to numbered items in the Bibliography.

The same result can be accomplished by typing in descriptions of

the network elements.

-2-

on the CRT of the voltage between nodes i and j. The user, upon

observing v(i,j) may introduce some changes either in topology or

in parameters of the given network, by appropriate commands.

Successive use of these steps is made until the user is satisfied

with the results. Thus far, the session that has been described is

typical of CIKCAL-i. A number of future extensions and modifications

can be visualized. It is, for example, conceivable that upon

satisfactory completion of the foregoing design session, numerically-

controlled tools may be instructed to convert automatically the

computer design into an actual circuit.

Between CIKCAL-I, however, and the final version of CIKCAL lie

a number of progressively more sophisticated versions, satisfying

additional objectives. The basic objectives of CIKCAL are as follows:

Communication between designer and computer should be in

conventional circuit terminology, and should be as independent as

possible of computer programming. A design engineer with no com-

puter experience should be able to learn and use CIKCAL in a matter

of minutes; it will be then possible for the designer to concentrate

primarily on design issues rather than on operational technicalities.

The designer should be able to edit on-line a given network and to

observe results of this editing. By editing here we mean the modifi-

cation of component values, source values or types, component

characteristics, and the insertion (or deletion) of elements. This

objective is essential for successful design, especially in cases

where formal design procedures are lacking, since it entails a

"feedback" mechanism between user and computer.

In addition to conventional elements, such as linear resistors,

capacitors, inductors and diodes it should be possible for the user

to define and use his own special elements. For example, a nonlinear

resistor could be defined by drawing with the light pen the desired

nonlinearity on the CKT. Alternatively, that resistor could be defined

by specifying the nonlinearity analytically.

There should be a compatibility of the system in all levels of

hierarchy. That is, a given network consisting of a number of elements

could in turn be called au element, and used as such in the composition

and analysis of a still larger network.

-3-

Special design aids should be incorporated such as the simulation

of environmental changes, aging of components, tolerance variations,

etc. l_'or example, by typing a given temperature range it should

be possible to obtain and display dynamic responses of the network

at the extreme temperatures of that range. The temperature law

that elements obey could be inherent to the system or externally

adjustable.

Finally the system should have growth capability so that modifica-

tion and additions can be made on subsystems without affecting

adversely the overall system. This growth capability is essential

to CIRCAL for the gradual incorporation of the foregoing objectives

and for the introduction of any new objectives.

The working foundations of CIKCAL have been established on the

basis of the foregoing objectives and the technological constraints

imposed by time-sharing systems. It was decided to analyze networks

using the state-variable approach. The primary reasons for this

selection are the generality afforded by such an approach in analyzing

unrestricted networks, and the ease of mapping the electrical network

into a computer model. Although usuaUy the state vector representing

the network is taken to have the minimum number of dimensions, the

approach taken in CIRCA.L-I calls for one state vector dimension per

energy storage element. Reasons for this decision are the great ease

of constructing a computer model from the network and the physical

relation of the state-vector :components to the network elements. Through

the state-variable approach, the actual dynamic behavior of the network

is decomposed in a time sequence of static problems, where the

solution of each static problem is used for revising the state used at the

next static problem and for determining the output of the network.

Subsequent solution of the static problem, equivalent to solution of a

set of simultaneous nonlinear algebraic equations, may be accomplished

in a number of ways. In CIRCAL-1 an iterative-relaxation approach was

chosen, where fictitious node voltages are relaxed to their actual

values on the basis of the current sum at each node. This approach

converges to a solution in a finite number of iterations, dependent on

network topology and component values, for a class of amnesic non-

linearities, The reasons for selecting this approach in CIRCAL-1 are

its independence from network topology and its ease of implementation.

-4-

Later versions of CIRCAL will use other approaches for solution of

the static problem, and the results will be evaluated experimentally.

Experimental evaluation of these approaches is necessary since

relative estimates of computer time can be theoretically bounded, but

these bounds are typically quite loose, as shown later in the report.

In addition to these fundamental decisions for CIRCAL-I various

other secondary decisions were taken on types of sources, elements,

and so forth, in order to expedite evolution of a working program.

These decisions are explained in more detail as they are presented in

the report.

To summarize, CIRCAL-1 analyzes linear, time-invariant R L C

networks with independent voltage or current sources that are steps

or sinusoids. Network size is limited to 50 branches and 20 nodes,

and networks can be given to the computer either graphically or through

a typer. Outputs are available as either voltage-versus-time lists

on a typer, or graphs on either the CRT or typer. Observe that the

foregoing limitations are not applicable to all subsystems of CIRCAL-I

but only to the present overall working version. For example, the

procedure solving the static problem can be applied to nonlinearities

of a certain class and the state-variable approach is applicable to

general nonlinear energy-storage elements. A graphical input-output

program is used to communicate with CIRCAL-1 through the Electronic

Systems Laboratory Display Console at Project MAC. A detailed

report on this activity is forthcoming under the title "Graphical Commu-

nication for Electrical Network Simulation. "

Throughout CIRCAL, the internal computer model or data structure

is established in almost one-to-one correspondence with the actual

network. Thus, resistors, inductors, capacitors and other elements

are represented within the computer with computational blocks which

carry all the relevant information about their corresponding real

elements. These blocks are in turn interconnected through a convenient

addressing system in correspondence with the real element inter-

connection of the given network. Thus, additions, deletions or modifi-

cations of elements in the network correspond to identical operations

on the computational blocks. Moreover, the two basic algorithms

(dynamic-to-static problem decomposition and static problem solution)

-5-

I \

c,= I T

Re= 3 c,= l

a r e applicable to any topological s t ructure of the foregoing blocks, s o
that the ultimate fundamental limitations of CIRCAL shall be due to

computer memory and time constraints, rather than to programming.

--
e-

Example of an Application:

As an example of a network analyzed by CIRCAL-1 consider the

circui t s f Figure 1. l(a).

branch by branch.

dynamic response at all the nodes, and to plot the voltage ac ross

nodes 1 and 2 and across nodes 2 and 0.

on the CRT, a r e shown i n Figure 1. l(b) and 1. l (c) .

The network is described to the computer,

Then the program is instructed to compute the

The results as displayed

(a) The network

Volts

Seconds

(b) The voltage across C,

Voli

Seconds

(c) The voltage across C2

Fig. 1 . l Step Response of an RC Network Computed by CIRCAL-1

CHAPTER II

METHOD OF ANALYSIS

A. INTRODUCTION

This chapter presents a method for the dynamic analysis of

networks consisting of capacitors, inductors, nonlinear resistors,

and independent sources. The dynamic problem is represented by

a series of static approximations over time intervals small compared

with the time over which the network solution changes appreciably.

Solution of the static problem at a given time interval entails knowledge

of the state of the network at the previous time interval. A new

state is then computed, to be used in the static solution of the next

time interval. Solution of the static problem is accomplished through

a relaxation method, where an arbitrary initial set of node voltages

is successively perturbed until equilibrium within a tolerable error

is achieved. Updating the state of the network for the next time

interval is accomplished through straightforward numerical integration.

State is represented here as the set of capacitor voltages, inductor

currents, and parameters characterizing other energy storage

elements. Observe that this representation does not necessarily

result in the smallest number of independent state variables. This

slight sacrifice of minimality is well justified by the resulting ease

of modeling the given network within the computer.

Section B discusses linear amnesic networks, and describes a

relaxation method for their analysis. The results of that section are

extended in Section C to certain types of nonlinear amnesic networks.

Finally, Section D treats the dynamic non-amnesic network problem

and shows how it can be formulated in terms of a series of amnesic

network problems.

Here the term relaxation refers to the method of Section B. In

the literature, this term is generally used to describe a method
proposed by Southwel126 for the analysis of mechanical structures.

27
We will borrow a term from Zimmerman and Mason to refer to

elements without memory. The term non-amnesic will be used to

mean elements with memory.

-7-

-8-

The method of Section B was independently derived by the authors
7

following a similar perturbation technique used in threshold logic.

A similar method, however, has been explored by Katzenelson and

Seitelman 17 with the electrical network problem in mind and probably

by others in related applications. A similar method for solving amnesic

networks (not necessarily electrical) has been presented by Birchoff

and Diaz 2 employing the relaxation technique of Southwell.26 In

addition, there exist more general schemes for solving systems of

linear equations that employ related perturbation relaxation and

iteration techniques (see e.g. Fadeeva ll).

B. THE LINEAR AMNESIC PROBLEM

Consider a linear passive amnesic network with N+I nodes. Let

the network be excited by time-invariant ideal voltage sources inserted

in the branches and by ideal current sources connected across pairs
#

of nodes. One of the nodes will be defined as datum (zero volts),

and an arbitrary set of node potentials {e j = 1,2,..., Nwillbe

assigned to the remaining N nodes. If {Ej} j = 1,2,..., N is the

set of node potentials required for equilibrium of the network then

it is desired to successively perturb {ej_ through {e_}, {ej_,...,

where {e m} denotes the set of node potentials at the mth iteration,

until a set Jof node potentials {e p} is found sufficiently close to {Ej} to

satisfy the error bound

N 2

(Ej - e p) < e (2.1)

j=l

where c is a tolerable upper bound on the sum-square error.

For convergence of the iterative process we require a reduction

of the sum-square error between successive iterations, i.e.,

N N

(Ej j+l) Z 2- e < E (Ej - e2" (2.2)

j=l j=l

for each m, such that m < p.

#
Guillemin 14 calls these pliers and soldering-iron entries respectively.

An ordered set {xj}, j = 1,2,..., Nwitlbe also denoted by the N-

dimensional column vector x.

-9-

Let _I TM. be the algebraic sum of the currents flowing into the
i

ith node• at the ruth iteration, when the set of applied node potentials

is {e_} j = 1,2, N. Define _e m÷l}• as follows :
- j

m÷l A m
= e. ÷IGS_.., j = 1,2.,...,N (Z.3)

e j J J

where K is a scalar, hereafter called the convergence constant.

Based on the foregoing definitions, the following theorem is established.

Theorem 2.1

Inequality 2.. 2. is satisfied for values of K in Eq. Z.3 within a

least upper bound K and a greatest lower bound 0. The proof of
V •

this theorem is presented in Appendix A. In that appendix it is seen

that the least upper bound K v is given by

2. T [G-l]
K = (2..4)
v AT T AI

where ____ is a vector representation of the ordered set {AIj},

j = l, 2., N, [G] is the conductance matrix of the network• and

the superscripts T and -1 indicate transpose and inverse respectively.

Evaluation of this bound involves more operations than direct solution

of the network,

E_= [G -I] Is (2..5)

where Is is a vector representing the independent sources of

network (see also Appendix A). Moreover• the progress of such an

iteration procedure cannot be conveniently monitored, since Inequality

2..Z includes the equilibrium potentials Ej, which are naturally

unknown during the iteration process. It is possible to compute the
N

quantities {Ej - e j) of Inequality (Z. Z) through use of the inverse

j=l
conductance matrix as follows:

E- e m = [G -1] AI m (2.6)

This approach, however, suffers from the same disadvantage, that is

the computation of [G -1] . On the other hand, it is possible to establish

a criterion similar to Inequality Z. 1 on the norm of AI and show that

satisfaction of this criterion implies convergence.

in the following:

Let it be required that after q iterations the set

satisfies the bound

This will be shown

(aijq}, j = 1,z, ...,N

-10-

N

Z (AI_)2 < 5 (2.7)

j=l

The left hand side of Inequality 2.7 will be called the current error

and 6, a positive scalar, will be termed the current error tolerance.

It is shown in Appendix B that if a value 5< c is chosen where

-liG-111
* I],fIG-Ill is the norm of [G- then Inequality Z.7 implies Inequality

o

Z. 1. As before, arbitrary node potentials {ej } willbe successively

perturbed such that

N N
2

Z (AImj +1) < Z (AI_ ")2 (2.8)

j=l j=l

m<q until Inequality2.7 is satisfied. Let _e re+l} be relatedfor
- j

to {eT} by Eq. 2.3. Then the following theorem is established.

Theorem 2.Z

Inequality 2.8 is satisfied for values of K in Eq. 2.3 within a

least upper bound K I and a greatest lower bound 0.

Proof

Using matrix notation, Inequality 2.8 can be rewritten as

T

[_im+l] T ___im+i < [___Im] __/Im (Z. 9)

Define the function U(K) by

T 1] T "-'_Im + 1U(K) _ [A__fm] AI__m - [A___I'm+ A (Z. I0)

Inequality 2.9 requires U(K) to be positive for m<q. Substituting

Eq. Z.6 into Eq. Z.10, using Eq. Z.3 and rearranging yields:

U(K) = -K 2 A IT[G] Z_I + ZKAI T [G]AI > 0 (Z. II)

The norm IIAll of a matrix A is defined as IIAll _ max
i[X_IJ-1

IIAx[I

where IIxll is the norm of X, defined as HX][AXTX.=

h

-11-

where the superscript m has been dropped for convenience and

where we have used the fact that the conductance matrix [G] is

symmetric, i.e.,

[G]T = [G] and [G]z [G]

Since [G] and therefore also [G] z is positive definite, the

quadratic forms A___IT[G] 2"A__/I and A_/IT[G] a_./I are positive quantities

for all AI/ 0. Aplot of U{K} versus K is shown in Fig. Z.1.

either Eq. Z. 11 or Fig. Z. 1 it can be seen that the greatest lower

bound is 0 and the least upper bound K I is

KI_A ZA__/IT[G]A I

_IT[G] ZA__/I

1

Kop t =_K I, i.e.

From

Evidently, fastest convergence occurs for

,,IT[Gla
K =

opt IT[GlZ

From Eq. Z. 13 it is seen that evaluation of K involves certain
opt

matrix operations which depend on the network topology. These

operations are not as time consuming as matrix inversion since they

involve use of matrices [G] and [G] z. Nevertheless, since K
opt

changes in general with each iteration (each different A_.__), the

investment of computational effort to evaluate Kop t may be wasteful.

In CIRCAL-1 a search based on Newton's method is used to approximate

initially Kopt. This method is executed once at the beginning of the

iterative process and the resultant value of K is retained for
opt

succeeding iterations, unless convergence cannot be achieved. In

this case a new value of Kop t is computed. More details on this

method are presented in Chapter III.

Let us examine now certain issues pertaining to the convergence

of the iteration procedure that has been described. The questions of

greatest interest here are

a) Does the process converge in a finite number of iterations ?

b) What is the fastest rate of convergence?

(2.13)

-12.-

c) How does this approach compare with classical matrix-inversion?

In order to answer these questions consider the function V{m),

defined below, which establishes a measure of convergence between

adjacent iterations in an N-dimensional vector space.
Z Z

V(m) = Z (Z. 14)

iar i

V(m) is the fractional change of the current error vector between

the mth and m+lth iterations when the optimum value of K, K
opt

is used in Eq. Z.3.

Substitution of Eq. Z. 3 and Z. 6 into Z. 14 yields after some

r ear ranging

ZKAIT[G] A__I - K 2AIT[G] z A__f

V(m) = iAil 2, ¢Z. 15)

where the superscript m has been dropped from A._II for convenience.

Substituting in Eq. Z. 15 Kop t .from Eq. 2.. 13 yields after some

rearranging
2

1 (a fIT[G] A__.fI) (AIT[G] A_.fI) Z

V(m) = [aI- 2 (A_.fT[G]ZA._.II) I II z I[G]Z I[z (z. 16)

Observe that if numerator and denominator of Eq. Z. 16 are
Z

multiplied by Kop t , then V(m) can be interpreted as the cosine

squared of the "angle", 0, formed between the vectors A__Im and

Kopt[G] A___Im. The latter, however, is the vector perturbing A_f m

into AI m+l These observations are illustrated in Fig. 2. Z. Angle

O may be further interpreted as formed by the direction in which

AI m is perturbed and the direction in which AI__.m should be perturbed

for most rapid termination of the procedure.

We proceed to show that

V(m) = cosZ0 (2. 17)

is lower-bounded by a positive constant dependent on the network

under consideration. The numerator of Eq. Z. 16 is a quadratic

form of a positive-definite symmetric matrix with a minimum at

-13-

]AT_ U(K)(ATT[G Point of fastest

_-K

,,, 2,<,T[_],,I

Fig. 2.1 Convergence Curve for Linear Amnesic Nelwark

Fig. 2.2 Geometrical Interpretation of V(m)

-14-

A jI = 0__ (equilibrium). For any fixed deviation (A__I) from equilibrium,

the quadratic form is bounded as follows:

A IT[G] AI > kmi n [A_._II 2

where kmi n is the smallest eigenvalue of

is upper bounded by

[G] .

(z.18)

The denominator

_II 2 [[G]AI[2 ![AI[4 kmax 2 (2.19)

where k is the largest eigenvalue and hence the norm of [G].
max

Eq. 2.18 and 2.19 establish the following lower bound on V(m)

2
k

V(m) = cos20 >
rain

-- 2
k

max

(2.20)

It is desirable to establish a relationship between the extremal

eigenvalues kmin, kma x and the network structure. Such a relation-

ship exists in the form of the following very loose bound 19

1
kmi n > , (2.21)

NRto t

k <
max NGtot

where Rto t and Gto t are the sums of all the resistances and all

the conductances in the network of N+I nodes. Based on Eq. 2.21 the

bound of Eq. 2.20 becomes

28 1V(m) = cos > (2.22)

-- N2RtotGtot

We shall compare this bound with experimental data in Chapter IV,

Section E. For the time being it is sufficient to note that this is not

a tight bound.

From Eq. 2. 14 and Eq. 2. 17 it follows that

2
IAIm+l I = IAImIJ1 - cos 0

Letting the initial root current error _I°l be bounded by air

a is a fraction and If is the magnitude of full scale current.

(2.23)

whe r e

More-

Recall that all eigenvalues of [G] are positive.

-15-

over, let _If be the maximum tolerable root current error, i.e.,

the value of _IPl at which the iteration process terminates.

Recursive use of Eq. Z. Z3 and the foregoing definitions of a, _ and

If yields for the number of iterations, q :

q < Zlo s /4 (z. z4)
-- 2

log(I-cos 0)

Since cos20 is lower bounded by Eq. 2.20, 1 - cos20 is upper

bounded and therefore q in Eq. Z.24 is lower bounded. This answers

the first question that was raised earlier, that is it confirms con-

vergence of the procedure in a finite number of iterations.

For small values of cos20, and _/a the number of iterations

can be approximated by

max q =
2

2
COS

(z. zs)

Substituting Eq. 2.20 into Eq. 2. 15 yields

k 2

max q < 2 k2 max (2.26)
rain

Evidently, the spread of eigenvalues of [G] determines convergence

rate. An accurate estimate of convergence rate as a function of

network size is unfortunately not possible from Eq. 2.21. For

example, as shown in Chapter IV, Section E a set of networks that

have been analyzed by CIRCAL-I Yielded a growth of the number of

iterations proportional to N 3/2," whereas the bound of Eq. 2.26

predicted a growth of N 8 for these networks.

To summarize, the answer to the second question that was raised

in the foregoing is explicit in terms of the extremal eigenvalues of

the network but not in terms of network size.

Solving the network by classical matrix inversion requires a

computational time which can be divided into two parts. The first

part consists of converting the topology of the network into a matrix

[G] and the second part involves inversion of [G] to obtain [G-I]

and use of [G -1] to obtain the solution. The former of these tasks

requires a time proportional to the number of nodes, N, while the

-16-

latter requires a time proportional to N 3. Matrix inversion may

be conducted only once in the case of a linear time-invariant network

between network modifications. However, in the case of nonlinear

networks, matrix inversion may be required for every new value of

the state vector.

C. APPLICATION OF THE RELAXATION METHOD TO NONLINEAR

AMNESIC NETWORKS

In this section, it will be shown that the method described in

section B can also be applied to a class of nonlinear amnesic networks.

Consider a connected network with N+l nodes containing only

amnesic elements and independent voltage and current sources. Let

the i-v (current-voltage) characteristics of each nonlinear element

satisfy the following constraint:

i - "

P IP" < Mu<OO (Z.27)0 < ML<__ v - v , --
P P

where p and p' are any two points on the i-v characteristic. It

can be shown that this condition (related to the familiar Lipschitz

conditions) guarantees the existence of a unique solution for the
8

network.

Following the notation of the previous section, let {e m} represent

the set of node potentials at the ruth iteration. Proceeding as before,

m+ l m ___iim (2.3)e =e +KA

where A__IIm is the vector, elements of which are the sum of the

currents at each node, i.e.,

Ai m = G [E__- e m]

Consider now a typical nonlinear element satisfying the foregoing

condition and illustr_ted in Fig. Z. 3. Let point p on this curve be

defined by the voltage, V m across the element, i.e.

V m m m= e . - e.

i j

where the element is connected between the ith and the jth nodes of

the network. Applying the algorithm of Eq. Z. 3 for the network,

Adding or deleting elements or changing their value.

-17-

T

v

Fig. 2.3 i-v Chmacter|stic of a Typical Nonlinear Element

defines a new point p' determined by

Vrn+l m÷l rn+l"- e. - e.

z j

If a straight line is passed through points p and p', and the

nonlinearity of Fig. Z. 3 is substituted with a linear element (resistor

and source) having that straight-line as its i-v relationship, then

starting from point p, the rule of Eq. 2.3 gives also rise to p' for

this new network. In other words, so far as the transition from

the ruth to the m÷lth iteration is concerned, the algorithm Z. 3

cannot distinguish whether the nonlinearity or its linear substitute

is present in the network. Consequently, the behavior of the current

error between adjacent iterations can be obtained from the actual

network with appropriate fictitious linear substitutes in place of all

the nonlinear elements as illustrated in Fig. Z. 3 for one such

element. Hereafter, we shall call the actual network nonlinear

and the fictitious one linear. The nonlinearities of the network,

however, are subject to a condition which guarantees that any two

points p and p' on their i-v characteristics will be connected with

-18-

a straight line of bounded slope. Hence the conductance of the linear

network will have positive, real, bounded eigenvalues between any

two iterations. Consequently, the iterative process will converge

in a finite number of iterations, determined by the minimum and

maximum eigenvalues respectively from the set of all eigenvalues

of the fictitious linear-network conductance matrices formed at

every iteration.

Observe that the foregoing condition is sufficient; but not necessar_

for convergence of the process. It is for example possible to have

a small region of negative resistance, in a certaini-v characteristic,

if that region is never entered by {e m} in the course of iteration.

D. FORMULATION OF THE GENERAL NON-AMNESIC PROBLEM

It is a known result of the State-space approach 27 to the analysis

of nonlinear systems that the entire past history of the inputs x{t)

up to time t and the initial conditions of a system can be adequately

represented for purposes of future analysis in terms of the

state vectors{t) or state of the network. Generally, the output

vector,y(t_and the way,_(t), in whichs(t) changes are given as

amnesic functions of the state and of the inputs, that is

y(t) = f[_s(t)]

s'{t) = g[_s(t), x(t)] (Z. 28)

Typically, the dimensionality of s(t) is the number of independent

differential equations describing the network. This number can

be obtained from a knowledge of the network topology and involves,

in general, some processing. In the following, we establish as

state vector s(t) the collection of capacitor voltages and inductor

currents if capacitors and inductors are the only energy-storage

elements. Thus, the state vector s{t) is redundant in the sense

that it may have more elements than a minimal state vector

representation. On the other hand, the one-to-one correspondence

established between each network energy storage element and a

component of the state vector, facilitates the formation of a direct

computer model for the network and makes possible easy modifica-

tion of that model corresponding to network modifications.

-19-

This approach can be regarded as representing each non-amnesic

element by an amnesic element with an updatable "state" s i(t). The

network at each instant of time is then completely characterized by

its state vector s(t), which has a dimension for each non-amnesic

element. Since this new network is amnesic_ the results of Sections

B and C can be applied to obtain a solution at each instant of time.

The states of the nonamnesic elements are then updated, and the

solution is computed for the next time instant.

As an example of this approach, consider the i(t) - v(t) relation-

ship defining an inductor

1 P

J v(v) dT (2 29)i(t) = _

-co

Let t and
n tn- 1

apart, i.e.

be two values of the parameter TAt seconds

t =t +At
n n-I

Then from Eq. 2.29 we have

(2.30)

t t

1 f n-I 1 f ni(tn)'= _ vl'r) dv ÷_

-oo t
n-1

V(T) dv

if= i(tn-l) +T, v(v)dv (2.31)

tn- 1

The last term in Eq. 2.30 is the area under the curve v(v)vs, v

from v-- tn 1 to v = t as can be seen in Fig. 2 4. This area
a n

can be approximated by the area of a trapezoid with bases V(tn_l)

and V(tn) and altitude A t shown in Fig. 2.4. Using this approxima-

tion, Eq. 2.30 becomes

Provided that the nonlinearities are continuous and strictly mono-
tonic in the iav plane.

-_0-

IfJJ

JJ _ f

tn_ 1 tn

v(T) dT _½At (V(tn_l) + V(tn))

1"

Fig. 2.4 Trapezoidal Approximation to Area under the Curve

v(t)

(tn) ?
4-

I

' _Ctn_'¢'o)1#,_ Ol '°

0

(a) Inductor Model

RL = 2L/ZSt

I n = i(tn_l) + iR(tn_ 1)

v(t)

i(t)+

C

+

v(t n)

i(tn) _ o

+

vR(tn) $ RC

v:?
Rc = At/2c

(b) Capacitor Model V n = V(tn_l) + VR(tn_ 1)

Fig. 2.5 Amnesic Models for Inductor and Capacitor

-21-

1 1
i(t n) _i(tn_ l) +_ " _(V(tn_ l) +V(tn))At (2.31)

If iR(tn)
is-defined as

AAt
iR(tn) = _-_-Vltn) (2.32)

then Eq. Z. 31 can be written as

At
i(tn) = i(tn_ I) ÷ iR(tn_ I) ÷ _ v(t n)

(2.33)

It is assumed that the quantity i(tn_l) and the quantity iR(tn_l)

defined by Eq. 2.3Z are known. Now define

A i(tn_l }+) (2 34}In = iR(tn- 1

and

A 2L (2.35)
RL= A'-T"

Using these definitions, Eq. Z. 33 becomes

1 (z. 36)
i(t n) = I n +_ V(tn)

This equation describes the terminal characteristics of a branch

consisting of a linear resistor R L in parallel with a current source

In (see Fig. 2.5(a)). If Eq. 2.35 is substituted into Eq. 2.32 and

the result is compared with Fig. 2.5(a), the quantity iR(tn) defined

in Eq. Z. 32 can be identified as the current flowing through resistor

K L. This interpretation will be useful in future developments.

A model for the capacitor can be similarly derived, and is shown

in Fig. 2.5(b). The terminal relations are given by

+ R C (2 37)V(tn) = V n i(tn)

w he r e

RC A= 2--'cAt (2.38)

V A V(tn_l) +) (2 39)n = vR(tn- I

-Z2 -

and where vR(tn) is defined by

bat.
Vl_(tn) = _-_ 1(tn) = R C i(tn) (Z. 40)

and can be interpreted as the voltage across the resistor in the

amnesic model.

In most cases where a lumped parameter representation of a

physical phenomenon is employed, the memory is represented

entirely by capacitors and inductors. However, other non-amnesic

elements can be handled in a manner similar to our treatment of the

inductor and capacitor. Nonlinear, time-varying, two-terminal

energy storage elements can be easily treated, provided that their

state representation, usually in differential equation form, is first

converted to a difference form

V(tn) = f[V(tn_l), i(tn_ I)_ + R[v,i, tn] i(tn)

(or the dual of this) where v and i are the terminal voltage and

branch current and f and i_ are arbitrary single-valued functions

of their arguments.

CHAPTER HI

COMPUTER PROGRAM

A. INTRODUCTION

In this chapter, CIRCAL-1, a computer program for analyzing

networks based on the methods of Chapter 1.1, is described. The

program is capable of analyzing any connected RLC network {having

up to Z0 nodes and 50 branches) _ with independent voltage and

current source excitations. In the present version of the program,

these sources must be either sinusoids or steps. Although the

program presently treats only linear networks, modifications can

easily be made to include diodes and other nonlinear elements

satisfying the conditions set forth in Chapter II. The circuit analysis

package was intended for use on the Project MAC time-shared IBM

7094 computer and associated graphical displays, where the user
4

can control the various phases of execution. The programs were
24

written in the AED-0 language, an extended version of ALGOL-60,

developed at the Electronic Systems Laboratory, M.I.T.

2O

B. BASIC OPERATION

The computer implementation consists of a main supervisory

program CIRCAL T and an associated group of subroutines {see

Fig. 3.1). The user when seated at one of the Project MAC consoles

gives commands to CIRCAL that enable him to describe and process

a circuit. The commands and corresponding computer action are

listed in Table 3.1.

The program could be dimensioned to handle much larger networks,

however this dimensioning seemed adequate for a preliminary

s t-ady.

Since time was short these were thought to be the most useful
excitations. Other waveforms such as square, triangular waves,

or arbitrary signals introduced as graphical input by the operator

can easily be appended.

The name CIRCAL is used interchangeably both for the family of

network-analysis programs, and for the supervisory program
within CIRCAL- 1.

-23-

-24-

Table 3. 1

List of Commands

Command Machine Action

input accepts topological description
of network

analiz computes dynamic solution for
entire network

print v(nl, n2) prints numerical values of the

voltage from node nl to n2 as a
function of time

plot v(nl, n2)

disply v(nl, n2)

erase

quit

plots a graph of the voltage from

nl to n2 on the typewriter

plots a graph of the voltage from

nl to n2 on the crt display

removes graph from crt display
ends execution (removes CIRCAL

from core)

The "Input" command causes a transfer to the subroutine TOPO.

This subprogram accepts descriptions of the network branches from

the subroutine INPT and builds the network model, or data structure,

in computer memory. When the model has been built, control is

returned to CIRCAL. If the user now gives the command "Analiz",

the following sequence of events takes place: Control is transferred

to DYSOL which sets up the dynamic problem as an amnesic problem

over the first interval of time. Control is then passed on to MNIP,

which applies the iterative method of Chapter II to compute the

amnesic network solution and returns control to DYSOL. Here, the

solution for the first time interval is stored, and the state of the

network is updated for processing at the next time interval. Control

is again passed on to the MNIP routine. This reciprocating motion

between DYSOL and MNIP is continued until the solution at all time

intervals is computed. Control then returns to CIRCAL. A command

of "Print v(n l, n2)", "Plot v(n I, n2)"or"Disply v(n I, n2)" causes the

voltage across nodes n I and n2 to be respectively listed, plotted on

the typewriter, or displayed on the cathode ray tube.

Two other commands not directly associated with the processing

of the network are "Erase" and "Ouit". The command "Erase"

causes a picture currently being displayed on the CRT to be removed.

Typing "Quit" removes CIRCAL and its associated subprograms

from memory.

-Z5-

(input)

(onollz)

ClRCAL (el'_e)

Fig. 3.1 Organization of the Circuit Analysis Program

Fig. 3.2

READ COMMAND F

no _

SUBROUTINE

Simplified Flow Chart of the Main Supervisory Program CIRCAL

-26-

A simplified flow diagram for the CIRCAL program is presented

in Fig. 3.2. The commands are read through a subroutine called

RWORD which loads BCD "items" (groups of characters separated

by a space, parenthesis or comma) typed on-line into contiguous

storage buffers. If a carriage return is the only item read, then

CIRCAL will type a list of the available commands and will then

ask for the next command. Otherwise the first item read is taken

to be the command, and the command table is searched. If the

item is not found in the command table, then the program will type

the item back to the user, telling him it is not a command, and

asking for the next command. If the item read is found in the command

table, a transfer will be made to the subprogram that provides the

desired action.

C. THE MODELING PLEX

I. General Considerations

Recall from Chapter I that our approach to circuit analysis is

to build a model or "data structure" for the network consisting of

computational blocks of storage with input and output, representing

the branch elements, connected to other blocks of storage assuming

the role of nodes. The actual computer implementation departs

from this description in just one respect. Instead of providing each

simulated element with its own input-output mechanism, each block

is given a characteristic "identifier" and an external operator is

provided which examines the identifier of each block and supplies

the appropriate input-output relation. This approach saves core

space since it eliminates unnecessary repetition of computer instruc-

tions. The combination of data structure and operator forms what

is called the modeling plex for the network.

The modeling plex is simplified in two respects if we consider

a voltage source as always associated with a series impedance and

a current source as associated with a shunt impedance. Network

branches based on these constraints and allowable in CIRCAL-I

are shown in Fig. 3.3. First, this approach makes it unnecessary

to include junctions which are not electrical nodes in the data structure.

These arise whenever a voltage source is inserted in a branch.

-Z7-

Secondly, it reduces all branches with linear elements to one basic

"canonic form", hence (for this preliminary version) eliminating the

need for an identifier and reducing system complexity. It is clear

that this convention imposes no topological restrictions on the

circuits that can be handled, since any element connected across a

voltage source or in series with a current source may be removed,

and connections of the type shown in Fig. 3.4(a) can always be changed

into their equivalent forms, shown in Fig. 3.4(b).

2. Formation of the Data Structure

The data structure for a network is composed of three basic

building blocks: There are blocks of storage registers or "beads"

representing the electrical nodes in the network. Herein are

stored the node potentials (E), the sum of the currents flowing into

the node (DI) and other pertinent information shown in greater detail

in Fig. 3.5(a). Other beads called parameter lists or t,p lists"

which contain most of the essential information about the branches

are shown in Fig. 3.5(b). The P lists are connected in strings to

the nodes through intermediate beads called "junction boxes". There

are generally two junction boxes for each P list, and each junction

box has a register or component to indicate the polarity of the source

in the branch (+1 if the positive terminal of the source is toward

the node to which the junction box is connected, -i otherwise). In

addition, each junction box indicates the node to which the other

end of the element is connected. The last junction box in each

string references a location in memory called the "tie point". All

actual referencing and interconnecting of beads is accomplished by

providing a register or part of a register in a given bead caUed a

"pointer" whose value is the address of the first item in the referenced

bead. The statements "A is a pointer to B" or "A points to B" mean

that the contents of A is the address of B. Fig. 3.5(b) shows how

a branch consisting of a sinusoidal voltage source and series-inductor

is mapped into the P-list.

All beads in the data structure except the nodes are referenced

by pointers in some other bead. Pointers to the nodes are stored

in an array.

-28-

4"

(
"4"

(

TYPE: RV TYPE: LV TYPE: CV

C
TYPE: RI TYPE: LI TYPE: CI

TYPE: R TYPE: L TYPE: C

Fig. 3.3 Allowable Forms for Network Branches

C
4-

)v
m

I("

(a) Source connections not allowed

4-

)v
m

=

iv

4(

---_(

C

(

)tI

(b) Equivalent acceptable forms

Fig. 3.4 Conversion of Networks to Acceptable Form

-29-

NODE BEAD

node potential

sum of currents into node

pointer to first junction box

coordinates for display

E

DI

FIRST

COORDI ICOORD2 °

(a) No:ie Bead

JUNCTION BOX
pointer to next j-box in string

pointer to other node

pointer to p list

indicatespolarity of source

P- LIST

branch type

source waveform type

resistor in d.c. circuit

source amplitude

voltage source in d.c. circuit

current source in d.c. circuit

frequency

element value

voltage source for capacitor model

current source for inductor model

I NE_T!
NC | I

P.LIST J_. I /--ELEMENT

SIGN I "_ I /#,/--SOURCE

,,,__
TYPE ILV=

-._)TYFTE" J sin

P2 2.

P_ i

_ _,/__0o,,_ -
P6 5."

P7

P8

(b) Junction Box and P List

Fig. 3.5 Blocks of Storage or "Beads" Comprising the Data Structure

-30-

In order to clarify data structure organization, consider the

circuit of Fig. 3.6. Fig. 3.7 shows a step-by-step development

of the data structure for this circuit as the circuit is fed into the

computer. The nodes are numbered in progressive order with the

datum or zero voltage node as zero, while P-lists and junction

boxes are automatically introduced for each element. It is assumed

2 (D 3 ®

@-__.

Fig. 3.6 Typical Clrcult to be Analyzed

here that the typer alone is used as an input device, although the same

approach holds when the CRT is used. The statements which

are successively typed to feed the network into the computer are

shown on the top of Figs. 3.7(a), (b), (c) and (d). The organization of

these statements is explained next.

The subroutine TOPO which generates the data structure accepts

statements of the form:

where

NI:

NZ:

TI:

VI:

VZ:

TZ:

V3:

NI, N2, TI, Vl, V2, T2, V3

1st node (positive terminal of the source is toward N1)

Znd node

branch TYPE: RV, LV, CV, RI, LI, CI, R, L, C

as shown in Fig. 3.3

element value (ohms, henrys, farads)

source amplitude (volts, amperes)

source waveform: sin, cos, u (for unit step)

source frequency (cps) (necessary only if TZ is sin or cos.)

O

c_

o

m u

Ao @

j_
o

u

n-"

-31 -

Q.

°.

Q.

x

Q.

.IQ

0

_0

14.

"6

.u
u

0

.o

U

0

"6

@

E
8-

_>

L

c_

U.

-32-

stl

kJ

no

yes

1returnto I

yes

no

build NODE(N)
with pointer

tot P

_ uild junction box
and insert as first

in string

N-': N2

lry_
NC(N1) = NODE(N2) J

NC(N2) = NODE(NI)I

Fig. 3.8 Flow Chart of the Subprogram TOPO
which Generates the Data Structure

-33-

Upon admission of such data, the program generates a P list and

proceeds to determine if node N1 already exists. If it does, then

the branch consisting of a junction box pointing to the P list is

inserted as the first item in the string of junction boxes. The

component NEXT of the newly defined junction box is set pointing

to the junction box which was previously pointed to by the node,

The component FIRST of the node, is now set pointing to the new

junction box. If the node does not already exist, a new node is

created and the junction box with P list is inserted as the only item

in its string. The foregoing action is repeated for node N2. If in

either case the node is the zero node (which exists a priori), then

no action is taken to initiate a string. After the above process has

been repeated for both nodes, the component NC in each junction

box is set pointing to the opposite node. A flow chart for the data

structure generation is shown in Fig. 3.8. Detailed flow charts

and program listings are contained in Appendix D.

3. Conversion of the Dynamic Problem to a Set of Static Problems

Subroutine DYSOL performs the operations linking the dynamic

and the amnesic problems. The subprogram MNIP which produces

the amnesic solution is to be provided with a network the branches

of which contain at most one linear resistor, one constant current

source and one constant voltage source connected as in Fig. 3.9. Para-

meters PI, P3, and P4 of the P list are recognized by MNIP as the

P2

÷

P3_(

Fig. 3.9 Canonic Form for Network Branches

resistor, voltage source, and current source respectively. The

function of DYSOL then, is to convert the dynamic problem into

a sequence of static problems, by transforming all branch elements

into canonic form.

-34-

To illustrate, consider a branch containing an inductor and a

parallel current source. Fig. 3. 10 demonstrates the use of various

P-list components during the conversion. Parameters referring to

the original branch description have been previously filled in by

Subroutine TOPO. Subroutine DYSOL converts the inductor to its

equivalent static form, (Fig. 3. 10(b) _ computing the values of the

resistor (Pl) and equivalent source (P8) from Eqs. 2.34 and 2.35,

respectively. The value of the source at the particular time of con-

sideration is computed and temporarily stored in a variable called

SAMPLE. In the final step, SAMPLE is added to P8 to form P4,

and 13 is set to zero. The resulting canonic form is depicted in

Fig. 3. 10(c). A similar procedure is carried out for the remaining

branch types shown in Fig. 3.3. The flow chart of Fig. 3. 11 traces

the steps followed by the subroutine in the conversion of these

branches. The foregoing operations are performed on each branch,

by the double loop shown in Fig. 3. 12. Here X is a pointer

to the particular junction box being considered. It is originally set

to quantity FIRST of the node under consideration, so that it

references the first item in the string of junction boxes.

After operating on a branch, X is set to NEXT of the present

junction box, thus pointing to the next junction box in the string (see

Figs. 3.5 and 3.7 for further clarification). Each time, X is checked

to see if it points to TP. If not, the program begins operation on

the P list associated with the junction box to which X is pointing.

If on the other hand pointer X does point to TP, the operations are

resumed for the next node. Notice from Fig. 3.7 that if a branch is

connected between two nodes neither of which is the ground node, it

will be referenced by two junction boxes. In order to prevent per-

forming the conversion operation on the same P list twice, conversion

is performed only if the sign of the junction box is +1. The

remaining portions of the chart are self explanatory. When all

branches have been converted, control is transferred to Subroutine

MNIP which computes the solution of the resulting amnesic network.

4. Solution of the Amnesic Problem

This section shows how the relaxation method for the solution of

linear amnesic networks described in Section B of Chapter II is

-35-

TYPE

SOTYPE

P1

P2

P3

P4

P5

P6

P7

P8

TYPE

SOTYPE

P1

P2

P3

P4

P5

P6

P7

P8

TYPE

SOTYPE

P1

P2

P3

P4

P5

P6

P7

P8

LiIi I

3.11

60.

3.5

Y///////,

(a) P List as set up by TOPO

I PI
I

I
L_

(b) Intermediate Form

0 PI

(c) Final Form used by MNIP

Fig. 3.10 Conversion of Network Branch to Canonic Form

sin 2_r(60)t

SAMPLE

-36-

enter from loop

C
'ELEMEN1

compute
i(tn_l), iR(tn-l)

P2=
compute

V(tn_ 1),

set P2 = 2L/hT

P8 = i(tn_ 1) 4. iR(tn_ 1)

P2: z t/2c
P7 = V(tn_ 1) 4- vR(tn_ 1)

I sample source 1store in SAMPLE

'SOURCE'

V

= P7
P4=-P8 +

P7 +
= -P8

return to loop

Fig. 3.11 Flow Ch art for Branch Conversion (DYSOL Subprogram)

-3?-

.et X = FIRST (NODE (L.))j_

-1 and
NC(X) _ NODE(0)?

Branch

x = NEXT(X)

no

_es

_et L = L + 1 until MOST + 1)

Fig. 3.12 LoopingMechanismusedin DYSOL

-38-

implemented. Subroutine MNIP (for Modified Newton Iteration

Procedure) performs this function on the amnesic network generated

by DYSOL.

Recall from Chapter II that the relaxation method for solution of

the network involves assumption of a set of node potentials {era},

computation of the sum of the currents at each node, and finally

modification of each node potential by adding to it a constant times

the sum of the currents into that node. The procedure is iterated

until the current error becomes tolerably small. We may think of

the MNIP program as containing an operator which travels along the

string of branches connected to a node, computes the currents in

the branches, sums these currents at the node, and stores the sum,

A I(L), where L is a node index in the node bead.

The basic operations are shown in the flow chart of Fig. 3. 13. When

AI(L) is computed for all nodes, the current error is compared with

the given tolerance 5. If it exceeds 6, then new node potentials

are computed by Eq. 2.3 and the entire process is repeated until a

set {e p} yielding a current error less than 5 is reached.

It was taken for granted in the above discussion, that a suitable

value for the convergence constant K was available. Let us see how

such a value might be obtained. Recall from Chapter II that the

change, U(K), of the current error is a convex upward parabola

K I

with maximum at K = _ where K I is the least upper bound on

values of K yielding convergence. Our approach is the following.

Two points K 1 and K 2 are selected, such that

a) Kl> K I

1
b) _ K I < K 2 < K I

The value of U(K) at K 1 and K 2 is computed and a straight line is

passed through these points as illustrated in Fig. 3. 14. The point

where that line crosses the K axis is denoted by K' and the ordinate
2

U(K'2) is computed. A straight line is then passed through (K2, U(K2))

and (K' 2,U(K'2)) to determine a new intersection K'I >K I. The

foregoing process is repeated recursively using K' 1 and K' 2 in

-39-

I compute branch L_current, I

X = NEXT(X)

L=L+I

> number of

yes

J return to 'J yes

J forall L do
E(I.) = E(I.) + K. _I_(L)

Fig. 3.13 Application of Perturbation Method
to Data Structure (MNIP Subroutine)

-40-

/
K;

K1 K2 K'

_K

Fig. 3.14 Est|mating the Lowest Upper Bound, K I, on the Convergence Curve

place of K 1 and K 2 until the difference of

than some small tolerance, e.g., 1 Percent

1
_(K I + K 2'); that is it is required that

Z(K 1' - KZ')

(K,I +K,z) < 0.01

' and is lessK 1 K z '

of the average estimate,

(3. 1)

When 3.1 is satisfied, a value of K equal to half the

computed upper limit is chosen, i.e.,

~I I '+K z')] (3.Z)Kop t = _[_(KI

It can be shown from geometric considerations that the least upper

bound K I can be found with any desired accuracy if initial points

are chosen satisfying conditions a) and b) above. In order to initially

obtain two points K 1 and K 2 satisfying these conditions, the

following binary-search procedure is employed. A value, Kx, of

K, is chosen and it is determined, by examining the sign of U(Kx) ,

whether K x is greater or less than K I. If K x is less than KI, then K x

If the ordinate at 2K is
doubled to obtain the new point ZK x. x

positive indicating that ZK x is also less than K I, then 2Kx is

taken as the original point and the above procedure is repeated until

a point greater than K I is found. A similar procedure is employed

if the originally chosen point, Kx, is greater than K I. In "this case

successively smaller values are computed by halving K x.

is

-41 -

It has been found experimentally (see Chapter IV) that the optimum

value of K for the entire iteration process is "fairly close" to the

optimum value for one iteration. Hence, the search for the optimum

value of K is performed only once at the first call of the subroutine

MNIP. Thereafter, optimum K is recomputed only if the particular

value of K currently being used does not reduce the current error

in successive iterations. A flow-chart depicting the operations of

Fig. 3.14 is shown inFig. 3.15.

5. The Output Program

The output program provides means for examining the voltage

across pairs of nodes in the network.

The voltage as a function of time may be listed in numerical form,

plotted on the typewriter, or displayed on the cathode ray tube. All

three forms of output are controlled by the subroutine of . PRNT. This

subprogram searches out the voltages to be printed or plotted, and

selects the appropriate output device. A flow diagram for . PRNT

is shown in Fig. 3.16.

To use . PRNT , a command is given to CIRCAL, of the form

COMMAND V{N___I, N___Z)M___BBM___A

where N1 and NZ are the nodes across which the voltage is to be

read, MB is the number of time increments to be printed starting

at the MAth computed point, and COMMAND determines the output

mode (typewriter listing, typewriter plotting or CRT display). The

underlined quantities are transmitted via the argument list to . PRNT.

The subprogram examines MB and if it is zero, sets MB equal to

the total number N of solution points that have been computed. The

program then checks to see if the last point to be plotted (the MB ÷ MAth)

is greater than the total number N of points computed. If it is, then

MB is set to N-MA so that only the computed points will be plotted.

The program then selects the appropriate time points from array T

and stores them in array TS. It also computes the difference between

the potentials at node N1 and NZ and stores these values in array F.

The program then examines the COMMAND and transfers to the

appropriate output device.

D. EXAMPLE OF OPERATION

The following presents a record of a typing session with CIRCAL- 1

where it is desired to evaluate the step response of a series LC circuit.

-42-

_K ch'°'c_seKI, K2
KI/2 < K2 < KI

i > KI

I,,
[oom,_o,ene',,,'<,,'<_F

no

Jcompo,,_nowno',:'L
-\poten,a"_o,c./

no

Fig. 3.15 Estimating the Optimum Value of K (MNIP Subroutine)

-43-

enterwith /COMMAND, N1, N2, MA,MB

starting with L = 0
until L = MB - 1

Conl_e:

TS(L)= T(L+ ivY)

F(L)=Ele(L + MA) -I_(L+ MA)

Fig. 3.16 Flow Chart for .PRNT

-44-

Machine response is typed in capital letters and user commands are

in lower case letters. An initial carriage return is given to obtain

a list of the commands. Command "input" is then given and the

branch descriptions are typed according to the format described in

section C(2). A final carriage return ends the input sequence.

Command "analiz" is then given. A time increment of .2 seconds

is chosen and 35 points of the solution are requested. The voltage

from node 1 to datum is then listed for 10 time increments and

plotted on the typewriter for 35 increments by giving the commands

"print" and "plot" respectively. Naturally, a different time increment,

display mode or number of plotted points could have been requested

in the session to suit the users desire. Observe that the time taken

to solve this problem is 2.3 seconds.

-45-

EXECUTION.

COMM.

THE COMMANDS ARE

INPUT
ANALIZ
PRINT F(N1,N2) MB HA
PLOT F(NloN2) MR HA
DISPLY F(NleN2) HR MA
ERASE
QUIT

COHMo Input

TYPE BRANCH DESCRIPTION.
10 iv 1. 1.
1 0 c 1.

COMHo analiz

TYPE TIME INCREMENT, NO. OF POINTS, ONE ITEM PER LINE.
.2

35

COMM. print v(1,O) 10

LIST OF V(1, O)

TIME FUNCTION TIME

O.

k.0000000E-01
7.9999999E-01
1.2000000E 00
1.5999999E 00

9.8638799E-03
1.2533970E-01
3.7832359E-01
7.2909928E-01
1.1223634E O0

2.0000000E-01
5.9999999E-01
9.9999998E-01
1.k000000E 00
1.7999999E 00

FUNCTION

k.88932kkE-02
2.36571kkE-01
5.kk69581E-01
9.2k23109E-01
1.3156k98E 00

COMM. plot v(l,O}

-4:6 -

GRAPH OF V(1 ,0)

SCALE IS 3.76211151 E-02 PER SPACE

TIME IS LISTED BELOW.

0.0000000
1.9999999
3.9999999
5.9999999
7.9999998
9.9999997
1.1999999
1.3999999
1.5999999
1.7999999
1.9999999
2.1999998
2.3999998
2.5999998
2.7999998
2.9999998
3.1999998
3.3999998
3.5999998
3.7999998
3.9999997
h.1999997
_.3999997
4.5999997
ho7999997
k.9999997
5.1999996
5.3999996
5.5999996
5.7999996
5.9999996
6.1999996
6.3999996
6.5999996
6.7999995

E-01

E-OZ
E-01
E-01

E-01

*.-...eeoeoooeoeoeooooaoe..eaosoeeeoe....,...,..i...=

O'J

t

I*
I *
I

t

t

COMM. quit

R 2.616+8o600

CHAPTER IV

RESULTS AND ANALYSIS

A. INTRODUCTION

This chapter demonstrates the use of CIRCAL-1 in the solution

of some simple circuits. In addition, the results of some programs

which were composed early in the development are examined in

order to evaluate relevant errors, convergence rates, solution time,

and other pertinent data.

We shall examine first the results of a special program written

to investigate the properties of the iterative method of Chapter II

and we shall compare some of this data with the theoretical considera-

tions of that chapter. We shall then pass on to the more general

circuit analysis program of Chapter III(CIRCAL-I) and examine

convergence of the amnesic solution. Two numerical integration

methods other than the one used in CIRCAL-I will be described.

The errors generated by these techniques will be compared to the

errors generated using the trapezoidal method of Chapter II. Some

examples of networks analyzed using the present version of CIRCAL

will be presented. Finally, some "experimental" results will be

presented on the number of iterations required for solution of the

amnesic problem.

B. ORIGINAL INVES TIGATIONS

In order to obtain some idea of the feasibility of the iteration

technique presented in Chapter II, a preliminary program was written

to apply this method to the network of Fig. 4.1. It was desired to

determine:

l) Which values of the convergence constant K yield a converging

solution for this network and which values bring about most

rapid convergence ?

z) In what manner does the solution converge (linearly, exponen-

tially, etc.) and approximately how many iterations are required

for any specified tolerance.?

3) How is the total number of iterations affected by the initial

values of the node potentials, {e°}?
J

-47 -

-48-

4) How are the foregoing results modified by insertion of a non-
linear branch in the network?

5t >2

I

2

I
2

Fig. 4.1 Network used for Preliminary Investigation
of the Perturbation Method

A number of computer runs were made using different values

of K. Table 4.1 lists the results of a sequence of such runs. Here,

the current-error tolerance, 5, was set at 0.1, and the solution

was computed starting with all of the node potentials at zero. Values

of the convergence constant K_ larger than 0.Z50 did not yield

convergence. At K = 0.250 and K = . 005 the solution was con-

verging very slowly (more than 80 iterations had not brought the

solution close to the equilibrium value). The value of K yielding

most rapid convergence (8 iterations) was 0.20. Since the upper limit

K I for this case is somewhere near 0.Z5, it might seem to the

reader that the optimum value of K should have occured somewhere

near K = 0. 125. Recall, however, from Chapter II that the optimum

value of K at one iteration is not necessarily optimal for succeeding

iterations.

Computer runs were al_o made to investigate convergence for

several values of the current error tolerance. It was found that

for values of K around 0. Z_ the current error could be reduced

to a value as low as 10 -7, without requiring a change in K. This

slow variation of the optimum value of K for any iteration has

been observed in a number of examples.

-49-

Table 4.1

Number of Iterations Versus Convergence Constant

Conv. Constant K No. of Iterations

0.250

0.245

0.200

0. 150

0. I00

0.050

0. 005

co

75

8

II

17

33

CO

Current error 5 = 0. I0

Initial values e I = e 2 = e B = 0.00

It has given rise to the strategy used in the final program, that

is actually computing a value of K which is optimum for the first

iteration and using this value for all successive iterations as long

as the current error is decreasing. It can also be noted in this

example that starting with node potentials further away from the

solution does not substantially increase the number of iterations

required for convergence, a phenomenon which has been substantiated

theoretically in Chapter II.

The convergence of the node potentials of the network in Fig. 4. I

from initial values of zero to their equilibrium values is illustrated

in Fig. 4.2 In this example the value of K was originally set to

I. 0 and decreased by increments of 0. I whenever reduction of the

current error was not realized. Observe that no convergence occurs

until K reaches a value of 0.2 which yields convergence for the

remaining iterations. The current error is plotted on this graph

for K = .2 and is repeated in Fig. 4.B on a logarithmic scale

versus the number of iterations plotted on a linear scale.

The straight line with negative slope of Fig. 4.3 indicates that

the current error decreases exponentially with increasing iterations.

-50-

Fig. 4.4 displays the logarithm of the current error versus the

number of iterations for various values of the convergence constant.

It can be seen from that figure that the slope of the line, which

represents the rate of convergence, is steepest at K- 0. Z and is

2.0

1.5

uJ

0 1.0

O
Z 0.5

1.0 0.9 0.8 0.7 0.6

E1 E2 E3

CIRCUIT

__ Initially

EI= E2=E 3=0volts

All resistor values in ohms

0.5

K

0.4 0.3 0.2 =

I

_ CURRENT ERROR

\

5.0

4"O

3,0

,.=.

- \ _2.0

_ / // jo,.oo
I , I / , I J I/ , L "_'-"---e.... I

0 2 4 6 8 I0 12 14 17 18

NUMBER OF ITERATIONS

Fig. 4.2 Current Error and Node Voltages vs. Iteration Number and K

less steep for values of K both greater and less than 0. Z. For

K = . 005 (near the lower limit) and K = 0. Z45 (near the upper limit)

convergence is still exponential, but very slow. Observe that the

rate of convergence is not exactly exponential in Fig. 4.4 although

the lower bouud for that rate was shown to be an exponential, if

optimum values of K are used at each iteration.

/k nonlinear element with the i-v characteristics shown in

Fig. 4.5(b) was inserted next in one of the network branches as

shown in Fig. 4.5(a). The scale factor C was adjusted so that the

equilibrium node potentials would be the same as for the linear case.

Table 4.Z compares the number of iterations required for this

-51-

I , ! _ I i i, , i , I i I i II i I i ®
o o o o o o o o _- _D
- m m) -- _ _ ,6 -- q q

(_U]I) t:lOUl:13 J.N3)'q:lfl:)

-52-

nonlinear network to the number required for the linear network of

Fig. 4. 1 for some values of the current error and starting node

potentials. Although more iterations seem to be required to reach

equilibrium in the nonlinear case, this increase is certainly not great.

Some further experiments were carried out with both this network

Table 4.2

Number of Iterations Required for Solution of

Linear and Nonlinear Networks

No. of Iterations

With

Initial Values Linear Nonlinear

(el, e2, e3) Current Error Network Branch

1, 1, 1

0, 0, 0

-i,-i,-I

0, 0, 0

0.1

0.1

0.1

•001

i0

16

ii

i0

21

Convergence constant K = 0.2

and a similar network using a nonlinear device with terminal charac-

teristics v = Ci 3. In all cases convergence rate was found to be

similar to the convergence rate of the linear network.

-53-

Table 4.3

Maximum of Convergence Curve for Values of the

Voltage Source

Value of Source, V Height at peak, U(KI/2)

1.0

2.0

3.0

0.5

.04

.16

.36

.01

zS,t= 0.5

5t

_.L

I
2

I

(a) Insertion of nonlinear element
in the network

i = c(1-e -v)

(b) i-v Characteristics of nonlinear element

Fig. 4.5 Linear Network with Nonlinear Branch

v

-54-

C. INVESTIGATIONS OF THE GENERAL CIRCUIT ANALYSIS

PROGRAM

1. Further Considerations of Convergence

This section verifies theoretical results concerning V(K) and

examines variations of V(K) with circuit parameters. The network

of Fig. 4.6(a) was used in this experiment. Analysis was carried

5

4-

() i1o
5

÷

v()

el °

Atl2

(a) R C network (b) Equivalent amnesic network
for first time instant

Fig. 4.6 RC Network used for Investigation of
Convergence in the Nonamnesic Case

out for the first increment of time. In this time increment the

capacitor is represented as shown in Fig. 4.6(b) by a resistor of

L_t
value _ and no source. The equilibrium equation for this amnesic

network is

z v (4.1)EI(_F + _)=

The conductance matrix (a scalar in this case) is

Z + I • 10 +At (4.7.)
G = A-_ "5 50A t

Using Eq. Z. 30 to evaluate the upper limit of the convergence constant

for this network yields

hI.l GhI 1 Z 10at

Kz=z GZ = B = _0+_t (4. a)
hi I hi I

T,_ this simple one-node case, the upper limit K I is independent of

-55-

the current error, hence of the original node voltages, and of the

independent source in the network. S:milar results will be obtained

in the case of a larger network if its condac_nce matrix is diagonally

dominant. For At = 0.5 Eq. 4.3 becomes

K I = . 476

The actual convergence curves obtained by choosing node potentials,

and applying the relaxation method for particular values of K is

shown in Fig. 4.7. For At = 0.5, Fig. 4.7 shows that the upper

limit K I is the same as that calculated above. Eq. 4.3 shows

.01

)

l)
.2

Fig. 4.7 ConvergenceCurvesfor the Network of Fig. 4.6

approximate linear dependence of K on At for small values

of At. The convergence curves of Fig. 4.7 exhibit the same

dependence. The height of the curves is independent of At. However,

the height appears to be proportional to the square of the voltage

-56 -

source as shown in Table 4.3. The results of Chapter II verify this

observation as shown in the following. From Fig. 2.1 the maximum

value of U(K) for the above network is

Imax-)2

K I (AI 1 G AI 1 (4.4)

U(K) - U(-2-)= GZ
AI 1 AI 1

= (AII)z

From Fig. 4.6(b) we can write

v o iAII- 5 el (-5 +) (4.5)

Squaring this expression and substituting the result in Eq. 4.4 yields

t V 2 o 2 1 2 0, 2.1 2 2
U(K) = _-_-Ve I g(-_+_-t) +(e I) (-_+_-_)

max

o

In the foregoing computation the initial node potential e l

be zero. Hence Eq. 4.6 reduces to

(4.6)

was taken to

U(K)
V 2

= _-_ (4.7)

max

which is independent of At and confirms the results of Table 4.3. At

time instants when the voltage source in the capacitor is not zero,

convergence is slower, since V in Eq. 4.7 is decreased by the

voltage across the capacitor. It is not reasonable to generalize this

result and to expect that the maximum value of U(k) is dependent on

the square of the voltage sources of an arbitrary network. That the

maximum value of the convergence curve does depend in some way on

the current error, as indicated by Eq. 4.4, is more generally true

and reasonable in light of the exponential properties of the convergence

rate demonstrated in Section B of this chapter.

2. Integration Techniques other than Trapezoidal

In Chapter II, it was shown that a non-amnesic element could be

represented over an interval of time, At, by an amnesic element

-57 -

with an associated updatable state. It was seen for example that

the i-v relation for an inductor can be expressed as

t

I fni(t n) = i(tn_ 11 + _ V(T)dT (2.31)

t
n-I

and the integral in Eq. 2.31 can be approximated by a function of

the voltage V(T)evaluated only at the end points of the interval. In

Chapter II, the integral was approximated by the average of the

integrand evaluated at the two end points, multiplied by the length

of the interval, /kt. This method of integration is known as a

trapezoidal rule or a modified Euler method. 15, 25 Two other ways

by which an integral can be approximated were programmed. These

methods will be described, and compared qualitatively to the

modified Euler method. The reasons for selecting the modified Euler

method over the other two will then become clear.

a. Euler Method (Rectangular Integration). The integral of

Eq. 2.31 can be approximated by the value of the integrand at one of

the two end points rnultiplied by the time increment. Under this

approximation, using the lower limit, Eq. 2. 31

becomes

At
i{tn) = i{tn_ 1) + --_ V{tn_ 1) (4.8)

or using the upper limit it becomes

i(tn) = i(tn_l) + AtL V(tn) (4.9)

Eq. 4.8 is termed an open form 15 since the value of the current at

the nth instant, i{tn) is completely determined by the current and

voltage at the n-Ith instant and hence can be computed directly.

Eq. 4.9 (the "closed form"), on the other hand, is more suited to

our purposes since it specifies a relation between the voltage and

current at the same instant of time, and hence can be physically

represented by a circuit of the form shown in Fig. 2.4(a).

In both open and closed-form cases a staircase approximation is

fitted to the curve v{T) versus r (see Fig. 4.8), and the area under

-58-

tnv(_)d. r _v(t n) At

tn_l L V(tn_l) At

closed/

en

tn- I tn Ir

Fig. 4.8 Euler Methods of Integration

the curve is approximated by the area of this staircase function.

It can be seen that in either case errors will accumulate more

rapidly than in the modified Euler methodif the slope of v(T) does

not change sign for some period of time. Clearly, if the slope

remains positive, the open method will be undercompensating

while the closed method will tend to be overcompensating.

A program was written using the closed form to represent

capacitors andinductors. The step response of a series L-C circuit

computed by this integration technique is shown in Fig. 4.9(b) and

is compared with the correct step response computed using the

trapezoidal method of Chapter If. Instead of a pure sinusoid, an

exponentially damped response is obtained in the case of the closed
15

form. This damping can be easily explained in terms of the

numerical integration approximation used, but will not be included

here. The application of the Euler method to some other lossy

circuits such as a series RC was, however, successful in that the

solution was computed with a small over-all error. A quantitative

comparison of the errors obtained using this method to the errors

obtained using the trapezoidal method, and the method to be presented

next will be carried out in Part 3 of this section.

b. Simpson's Rule . In order to obtain a better approximation

to the area under the curve v(7) versus T, a second-order curve

is fitted through three points (two previously computed and the

VOLTS

SECONDS

-59-

values in henrys and farads

(a) series L-C circuit

VOLTS

SECOKDS

(b) voltage v(t) at capacitor (c) voltage v(t) computed
computed using closed-form
Euler method

with trapezoidal method

Fig. 4.9 Computation of Step Response for a Series LC Circuit using
Closed-Form Euler and Trapezoidal Methods in Integration

present).

in terms of an inductor as follows:

-60-

This approach, known as Simpson's Rule, is illustrated

Eq. 2.31 may be rewritten as

t
n

/
tn_2

1
i(tn) = i(tn_ 2) + V(T) dT

If a second-order curve is passed through points V(tn_2), 2_(tn_ 1),

and V(tn) the integral in Eq. 4.10 can be approximated by

t

fn v(v) dT _ "_"

tn_ 2

(4. 1 O)

It is seen that this relation for the inductor can again be realized

by a resistor and a current source in the form of Fig. 2.4(a), where

3 and I = + _-V(tn_ 2) ÷ _ V(tn_l).RL= At n i(tn-2)

Although this second-order scheme is decidedly more accurate

than either of the two methods previously described it can in many

cases produce unstable solutions. This instability was experimentally

observed when Simpson's Rule was applied to the RC circuit of

Fig. 4. 10(a). The step response of the circuit computed by Simpson's

Rule and shown in Fig. 4. 10(b) is compared with the correct solution

computed by the trapezoidal method and shown in Fig. 4. 10(c}.

Simpson's Rule seems to compute the response correctly for a while

and then gives rise to exponentially growing oscillations about the

correct solution. Hildebrand 15 shows that these oscillations called

"parasitic solutions" will occur whenever any second or higher-order

numerical method (such as that of Eq. 4.12) is applied to a system

that can be described by a first-order differential equation. Besides

the differential-equation eigenfunctions, this approach generates

(4. 12)

and hence Eq. 4.10 can be written as

i(tn) = [i(tn_ 2} + _ V(tn-Z) + _-_ V(tn_ 1)] +-_ v(t n)

[V(tn_Z) + 4V(tn_ 1) + V(tn)]At

(4. ii)

-61-

I v.

-
v a l u e s in ohms a n d f a r a d s

(a) R C C i r c u i t

VOLTS

SECONDS

(b) v(t) c o m p u t e d f rom
SIMPSON'S RULE

vo LTS

SECONDS

(c) v(t) c o m p u t e d us ing
t r a p e z o i d a l m e t hod

Fig. 4.10 Step Response of Series RC Circuit Computed
using Simpson's Rule and Trapezoidal Method

-62 -

eigenfunctions that increase in magnitude with the number of iterations.

The exact form of these eigenfunctions for the network under con-

sideration is derived in Appendix C and confirms the above experi-

rrJental behavior.

Additional insight into the nature of the oscillations can be gained

by considering the following simple example. The equation for an

RC network is of the form

1 v(t) (4. 13)¢¢(t)= - -_

where the dot denotes differentiation with respect to time. We

shall consider here only the transient solution. Let us use a

simplified second-order method of integration. In particular we

shall us e

v'(t n) = v'(tn_ z) % Y-At 9'(tn_l) (4. 14)

where v'(tn) is the numerical approximation to V(tn). Fig. 4. 11

shows what happens when Eqs . 4. 1 3 and 4. 14 are

used to compute the solution. The true solution is shown dotted.

true solution

\/
\

ii___ Fparallel

I "" "-_""_ computed point

I I I true point
I I I

I I I
I I II

I I I
tn-2 tn- 1 tn

Fig. 4.11 Divergence of Second Order Integration Method

Assume that two adjacent points of the solution V(tn_2) and

V(tn_l) have been computed exactly by some method. From the

figure, it can be seen that V(tn_l) is less than V(tn_2) , hence the

slope at v = t given by Eq. 4. 13 will be less negative thann-1

-63-

SJ.'IOA NI (,0 ^ _SNOdS3_I 3r)_l,L

o

/ _ / =

r I _ _I -1_" _

. _ __

-

\'- / .i"

X\ o o "'

.4
&

L I I 1" I I "'7" "'- -...._ I
0

r o o _ o _r_

I° I° I"

(SI'IOA) 3SNOdS3_ 31"lgJ. WO_I::I NOIJ.VIA3a

-64-

the slope at T = tn_ Z. Since Eq. 4. 14 uses this less negative

slope to extrapolate a point v'(tn) starting at point V(tn_2) , it is

possible for small At that v'(tn)> V(tn). If, in addition, a numerical

error causes v'(tn) to be greater than v'(tn_l) (it can be shown

that this will eventually be the case), then the next computed point

v'(tn+l) will appear below its correct value. From that point on,

oscillations about the true solutions will increase exponentially.

3. Errors in Solution

In this section, errors generated in solving two simple networks

by the foregoing numerical integration methods will be discussed.

Theoretically, it is possible to estimate bounds on errors caused by

the various numerical integration techniques, as shown in Appendix C.

In order to gain further insight into the nature of these errors, this

section examines experimental results obtained in the earlier phases

of this research.

The step response of the series RC circuit of Fig. 4. 10(a) was

computed using each of the three integration methods described

above. The exact solution for the voltage across the capacitor and

the difference between that solution and the one obtained using each

of the above three methods is plotted in Fig. 4. 12. There is a

comparatively large initial error (off scale) due to the representation

of the capacitor over the first interval of time by a small resistor.

This error can be reduced by using a smaller value for that resistor.

Its effect can be, however, neglected for purposes of this analysis,

since it introduces only a transient error. The error plot for

Simpson's Rule is easily identified since it exhibits the undesirable

parasitic oscillations that have been discussed in the foregoing.

These oscillations increase steadily, and at a time of 22 seconds

begin to alternate in sign, giving rise to the unstable response of

Fig. 4. 10(b).

The Euler method behaves well and yields errors of the order of

1.5 percent of full scale. That the final error is attributable to the

current error tolerance chosen can be further verified by noting the

change in the direction of the error at 29 seconds. At this time,

the current error falls within the specified tolerance, 6, and hence the

computed solution is held constant for the remaining time intervals. The

exact solution, however, is still growing. Hence the error increases

-65-

and asymptotically approaches a constant. Note that if the current

error tolerance had been smaller, the computed voltage would not

have saturated so early in time and the final error magnitude would
have been smaller.

The error produced by the trapezoidal method is almost
identical in its behavior to the error of the Euler method. However,

the magnitude of the former is about half the magnitude of the

latter. This is not surprising if it is recalled that the resistor used

in the capacitor model is _t/2 instead of At. This small resistor

is significant in determining the change in node potential for a change

of current. Hence for a given final current error the voltage error

is reduced by a factor of 1/2.

In this example, the trapezoidal method seems to have no

advantage over the Euler method except for an increase of solution

accuracy. The accuracy produced by the trapezoidal method,

however, can always be obtained with the Euler method by decreasing

the current-error tolerance and allowing time for more iterations.

However, it has been noted in Fig. 4.9 that the Euler method does

not perform well in the analysis of the series LC network. The

difference of the computed response and the exact solution of the

network (shown in Fig. 4.9(a) } is plotted for the trapezoidal and

Euler methods in Fig. 4. 13. Besides being an order of magnitude

larger, the error magnitude for the Euler method grows over one

cycle. This is manifested in the solution as an exponential damping.

Moreover, dilation of the period of the solution has occurred. The

trapezoidal method exhibits neither a noticeable increase in the

error nor a dilation of the period over the cycle. The solution of

the network of Fig. 4.9(a) and the error produced by the trapezoidal

technique are plotted for 6 1/2 cycles in Fig. 4. 14. Although the

maximum error over a cycle first decreases and then increases,

by the end of 6 1/2 cycles the maximum error magnitude has not

exceeded the maximum error for the first cycle.

D. ADDITIONAL EXAMPLES

In this section four more examples of linear networks treated

with CIRCAL-I are given. Each of these was described to the

-68-

1. -
values i n ohms and farads

(a) R C network wi th Sine Wave Excitation

Volts

Fig. 4-15

Seconds

Capacitor voltage v(t)

Sinusoidal Response of RC Network

I v.

-69-

I I

+ I Y '
-L -

All values i n ohms,
henrys, and farads

(a) Twin-T Filter

VOL

SECONDS

(b) voltage v(t) i n Response to Unit Step

Fig. 4,161 Step Response of "Twin-T" Fil ter

-TZ-

all resistors- 1C_

Fig. 4.19 Ladder Network used far Evaluating Number
of Iterations asa Function of Network Size

109

Z
0
{--.

.<
ILl

g-

O

IAJ
a3

Z

10 8

107

106

10 5

104

103

102

101

COMPUTED RESULTS

BOUND

/

/
/

/ _=I.0% I s

2 4 6 8 10

NUMBER OF NODES IN LADDER NETWORK

Fig. 4.20 Convergence Speed of Relaxation Method

l
2O

-73-

of the number of nodes. The bounds derived in Chapter II are

evaluated and plotted in Fig. 4.20 for the 1 percent case. These

bounds are several orders of magnitude larger than the computed
8

curves and exhibit dependence on n . The bounds are seen to be

quite loose and of questionable value in estimating the number of

iterations required for a given network.

CHAPTER V

SUMMARY AND CONCLUSIONS

A. SUMMARY

Evolution of CIRCAL-1, a computer program for the on-line

simulation of electrical networks, is described. This version of

CIRCAL {CIRCAL-1) is limited to linear networks with sinusoidal and

step excitations. The relevant computational methods, however, are

applicable to a larger class on nonlinear networks with arbitrary

excitations. Users of the program compose with a light-pen the

circuit to be analyzed on a cathode-ray tube {CRT) while typing

component values on the teletype. Circuit description is in terms of

conventional graphic symbols for basic circuit elements. As the

circuit is composed on the CRT, a model of the network is formed

within the computer. This model consists of computational building

blocks which represent network branches and nodes in one-to-one

correspondence with the actual network. The dynamic problem is then

resolved into a number of static problems, solved in succession and

integrated numerically to determine the state of the network at each

instant of time. Each static problem is solved by relaxing the set of

node potentials which were valid in the preceding time interval, in

the presence of new independent source values, through use of Kirchoffls

current law. Issues of convergence, stability and approximation are

discussed from a theoretical and experimental viewpoint for the

techniques used in CIKCAL-1, as well as for other techniques that

were investigated. A number of examples are used throughout to

motivate, illustrate and verify theoretical results.

B. CONCLUSIONS

CIRCAL-1 is the first version of a program aimed specifically

at the simulation of electrical networks. The central objective here

is the unrestricted on-line analysis and synthesis of electrical

networks using a digital computer. More specific objectives were

set forth in Chapter I and are summarized here.

-75-

-76-

1.]Easy communication between designer and computer in
conventional circuit terminology.

Z. On-line editing of the network (modification of parameters,
component values and topology) while results are being
observed.

3. Provisions for use of special elements defined by the user
(or the computer) in addition to standard circuit elements.

4. Hierarchy of compatibility (e. g. the ability to consider a
large network as an element within a still larger network).

5. Special design aids such as simulation of environmental
changes, aging of components, etc.

6. Growth capability, that is adaptability to future requirements
which are not necessarily known at present.

CIKCAL-I, the first version of CIKCAL, was assembled with the

foregoing objectives in mind. Not all of these objectives, however,

were incorporated in this first version, sinc_ it was considered

desirable to start with a simplified program that would evolve progres-

sivelytoward more complex and more sophisticated versions. The

benefit of such an approach is expedience and availability of "experimental"

data early in the development. Such data, coupled to theoretical

investigations, verifies concepts, reveals weak and strong points that

could not be a priori anticipated, and often motivates future action.

For this reason, CIRCAL-1 was limited to analyze linear time-

invariant, planar, resistor-inductor-capacitor, voltage-and current-

source-excited networks where the excitations are either steps or

sinusoids. These limitations apply only to the presently available working

version of CIRCAL-1 within the program, the relevant computational

structure has been made independent of these limitations. For example,

the iterative procedure (MNIP) may be used to solve the static problem,

at each state, for a larger class of nonlinear resistors. Alternatively,

MNIP may be substituted with other static problem-solving methods.

DYSOL, the portion of the program which sets up the dynamic problem

in terms of many static problems and numerically integrates the results,

is applicable to any network that can be physically realized, since it is

based on the state-space representation of such a network. Likewise

TOPO, the procedure responsible for setting up the data structure internal

-77 -

to the computer is basically independent of all of the foregoing

limitations, since it establishes a "mapping" of the network within the

computer, regardless of the meaning or properties of the elements

involved. The first of the foregoing objectives has been met through

use of a cathode-ray-tube display and light pen. The designer com-

municates graphically with the computer in terms of conventional

representations of circuit elements which he interconnects by manipulation

of the light pen. This approach requires no special programming

knowledge and can be explained to a typical designer in about five

minutes. The specific implementations of this input-output approach

is presented in a forthcoming report entitled "Graphical Communication

for Electrical Network Simulation". Moreover, as was discussed in

the foregoing, provisions have been made in CIRCAL-I to complete

the accomodation of objectives 2 through 6 in future versions.

CIRCAL-I has demonstrated from a preliminary standpoint

the overall feasibility of electrical-network simulation by use of a

digital computer. More specific conclusions arising from use of

CIP, CAL-I are as follows:

I. Although loose theoretical bounds on the number of

iterations required to solve each static problem grow
as the eighth power of the number of nodes, N, in the

network, experimental results indicate a growth

proportional to N • Matrix inversion techniques grow

as N 3. Additional experimentation with both types of

techniques is required, however, in order to increase

the statistical sample and further confirm these
results.

Z. Trapezoidal integration seem quite adequate for future

usage in updating the state of the network, since it com-

bines acceptable accuracy with inherent stability.

3. Formation of the internal computer model corresponding
to a given n_twork is an adequate and rapid process. Few D

if any, modifications of this process are anticipated for
future vet sions.

-78-

o l_eal-time editing of the network while observing results

seem to be slightly handicapped by time delays inherent

in time-sharing systems. These delays (presently

ranging from a few seconds to a few minutes) prevent the

simultaneous displaying of results and adjusting of

network parameters. Instead, the man-machine com-

bination behaves like a sampled-data system with a.

direct consequence that the editing process must be

spread out over a longer time period.

APPENDIX A

PROOF OF THEOREM 7.1

Define N dimensional vectors by:

E _

E Z

w _ m

m AI m
el i

ez m AIz m

mA A
e = " _I = "

E N eNm lAIN m

Using this notation, Inequality Z. Z can be written as

(A. l)

(E__em+l}T(E_e m+l) < (E_e_m) T (E-e m) (A. Z)

where the superscript T indicates transpose. Equation 2.3 becomes

m+ 1 m
e = e + K AIm (A. 3)

It is desired to show that Inequality A.Z holds for suitable values

of K in Equation A. 3. If Equation A. 3 is plugged into Equation A. Z

the result is

[E_(em+K Aim)] T [E_(e_m+K AIg)] _ [E-em]T[E-e m] {A.4)

(the question mark over the Inequality indicates that the statement is

yet to be proven). Then if we regroup terms and expand we have

[E-e]T[E-e]...... -K [E-e] T aI -K al T [E_-__]+KZal T _ _[E_-__]T[E-e]__

(A.5)

where we have dropped the superscript m for convenience.

If we cancel the common term, and note the equivalence of the

second and third terms on the left hand sides of Inequality A. 5 we obtain

E-e A_I + AI T AI < 0 (A.6)-zK [__IT Kz

-79-

-80-

or the equivalent form

9

ZK [E-e] T A__II-K 2 /kiT AI i 0 (A.7)

Let us assume first that K is positive• Then if we divide Inequality A.7

by K we obtain the condition

?

2[E-e__]T A__II- K /kiT /kI 9 0 (A.8)

In order for Inequality A. 8 to be satisfied for positive values of K, it

must at least be true that

T/k_ 0 (A. 9)

Notice, however, that/kI 1, the current flowing into the ith node, can

be related to the node potentials by

- -7
e 1

• J (A. 10)

-AIi -- (gil gi2 giN) _eNl__ -Isi

where gil"" giN is the ith row of the conductance matrix [G] for the

network and Isi is the equivalent current source feeding the ith node.

If we multiply Equation A. 10 by -1 and write the result in matrix

notation, we have

/kl= - +is (A. tl)

A
where --IS =

ISN
m .J

(A. lZ)

Now observe that the equilibrium solution vector E_ by definition

satisfies

IS = [G] E__ {A.13)

-81-

If we substitute Equation A. 13 into A. 11 we find

w _ E-e_A= - [G] e +[G]__ [G][_ _] (A. 14)

If we then substitute Equation A. 14 into Inequality A. 9, we obtain

[E_-__]T _A: [_ _]T[G][_ _] >E-e E-e 0 (A. 15)

The term on the left of Inequality A. 15 is a quadratic form of

the conductance matrix [G]. But since the conductance matrix for
14

any linear amnesic network is positive definite, Inequality A. 15

will be satisfied for all vectors [E_-e]¢0. _ Now examining Inequhlity A.8,

we see that it will be satisfied if we require

Z[E-e] TAI A VK < = (A. 16)
In

AI T &I

Let us now return to Inequality A. 7. We will assume K to be

negative and show that this leads to a contradiction. If K is negative,

dividing Inequality A. 7 by K yields

Z[E-e] T A__I- 14 &I T &I < 0

But negative values of K clearly cannot satisfy Inequality A. 17.

K must be positive and upper bounded by Inequality A. 16.

APPENDIX B

RELATION OF CURRENT ERROR TOLERANCE

TO TOLERANCE ON NODE POTENTIALS

•
STATEMENT OF PROBLEM"

It is required that

N

i=l

= (E-e) T (E-e) < e

where E-e is an N-dimensional vector with components E. -e.

i=l, 2, ..., N,and where c is a small positive number.

related to E-e by

aI = [G](E-e)

then it is desired to find a value 6 = 6(_) such that

N

AI T AI = _ (Ali)2 < 8

i=l

implies Inequality B. 1.

Z• SOLUTION

Let the norm of any vector x be defined by

JlxU a T
-- ----X X

11
The norm of a matrix [A] is then defined by

llAll =_ max II [A] _ II •

IIx II : 1

it is a property of the norm that if ll

y= [A]x

then

IIy H< IIAII• II__]I

(B. I)

Let f_I be

(B.z)

(B. 3)

(B. 4)

(B. 5)

(B.6)

(B.7)

-83-

-84-

Now if both sides of Equation B.Z are pre-multiplied by -[G -1]

and Inequality B. 7 is applied then the result is

liE_- __II< IIG-1il • IIaj li (]5 8)

From Inequality]5.3 and Equation]5.4 the norm of AI is upper

bounded by 5. If 5 is taken to be

8 - • (B. 9)
IIG- l II

then Equations B.4 and]3.9 and Inequalities]5.3 and]5.8 yield the

desired result Inequality]5.1.

APPENDIX C

PROOF OF PARASITIC EIGENFUNCTIONS

The network to be analyzed is shown in Figure C. 1.

i(t)--_

Fig. C.1 SeriesRC Circuit

The differential equation for the network is

i(t) = c _,,1__2t)_ E-v(t)
t_O (C.1)

The solution of Equation C. 1 is

t

v(t) = E(1-e - -1_ t > 0 (C. 2)

Simpson's Rule when applied to the capacitor I-V relation yields

At
Vn+l = Vn- 1 + _ [in- 1 ÷ 4in + in+l"] (C .3)

where the subscript indicates the point in time at which the voltage or

current is to be evaluated. Equation C. 1 yields

E-_
ik = ---K-- (C. 4)

Putting thia in Equation C. 3 yields

or

where

At
Vn$1 =Vn_ 1 + _ [6E -Vn_l-4Vn-Vn+l] (C. 5)

Vn+ 1 = Vn- 1 _-_-_-_ [Vn- 1 ÷ 4_rn + Vn+ 1] -2AEh (C. 6)

A A 1
- R-C- (c.7)

h A=At (c. 8)

-85-

-86-

Regrouping terms in Equation G. 6 yields

Ah 4Ah

(i - T) Vn+l - 3 Vn -

+ Z AEh = 0

{1+ Ah) _n-1

(c. 9)

Consider now the homogenious equation (E = 0)

4Ah Ah
(1 Ah) Vn+l Tv - (1 +- 3 - n _--) Vn- 1

= _k then Equation G. i0 becomes
Let V k

(1 _.Ah)_n+l - T4Ah _n- (1 + Ah)_n-I

Multiplying through by _n+l

(1 - A--h-h) IBZ - 4Ah
3 3

=0

=0

yields the characteristic equation

Ah
- {I +--) = 0

3

(c.10)

(C. 11)

(C.lZ)

The solution of Equation C. 9 will be of the form

n

Vn = co_n 0 + ClP 1 + E (c.13)

where Do

Solving Equation C.IZ for the roots yields

and _i are the roots of the characteristic Equation C. 12.

-- ± +3 Ah

1 - --_-

Ah

3

(c.14)

For small values of h, the square root can be represented by the

first two terms in the binomial expansion

_ - ±i±-- () Ah

Z 1 3

(c.15)

Expanding the fraction in Equation G. 15 in a power series, multiplying

-87 -

and neglecting terms of second order or higher yields

2 Ah Ah
_±l+-- ±--

3 3
(C. 16)

or

_o _ l+Ah (C. 17. a)

1 Ah
_i _ -l+ {C. 17. b)

From Equation C. 13 the solution will be

1 Ah)n + E
Vn = Co{1 + Ah)n + {-1)nCl{1 ---3 (C. 18)

The two terms to the power

hence, the solution is

v _ C
n o

n behave approximately exponentially;

1

Ahn - _ -Ahn

e + (_l)nC1 e + E

t
n tn

-- +_RC

= C e + {-1)nc1 e + E
O

{C. 19)

If there is any initial error in the solution, C 1 will not be zero and

hence a parasitic solution alternating in sign and exponentially

increasing with a time constant of three times that for the RC

circuit will be present.

APPENDIX D

PROGRAMS

1. A NOTE ON THE AED-0 LANGUAGE

The circuit analysis programs were written entirely in AED-0,

the Project MAC version of ALGOL-60. The general structure of the
18

AED language is identical to that of ALGOL as described by h/lcCraken

except for transliterations (e. g. the $, replaces the semicolon as the

end-of-statement mark). However, data structure features are

available which are not included in ALGOL. Those features of the

data structure used in the circuit analysis programs will be briefly

described here.

It is possible to define a variable called a "pointer" which con-

tains the address of another variable in a list. If P is a pointer to a

list and V is a variable in the list, then V is referenced by the

statement V(P). It is possible for the list itself to contain pointers

to other lists which in turn may contain pointers to still other lists.

In our programs variables in the P lists are referenced by pointers

{P.LIST) in the junction boxes which in turnmay be referenced by

some index pointer X. Hence, a variable, say P1, in the P list would

be referenced by a statement of the form

P1 (P.LIST(X)).

So called "packed components" which form only parts of a computer

word are referenced by pointers in the same way. A complete

description of the structure of the lists and pointers is given in

Reference 24.

-89-

_o

-90-

PROGRAM FLOW CHARTS AND LISTINGS

COORD1

COORD2

DI

DUMMY

E

FIRST

31

JZ

LIST
MOST

N

NC

NEXT

NO DE

N1

NZ

P. LIST
P1

PZ

P3

P4

P5

P6

P7

P8

SIGN

SOTYPE

T

TP

TYPE

V

x

DEFINITION OF VARIABLES AND PROCEDURES

USED IN THE PROGRAMS

Variables Common to all Programs

- not used

- not used

- sum of currents at node

- needed for display program

- node potential

- pointer to first junction box in string

- array of pointers to junction boxes

- array of pointers to junction boxes

- array of pointers to the p lists

- total number of nodes {excluding node O)

- total number of time points

- pointer to opposite node

- pointer to next junction box in string

array of pointers to the node beads
node number

node number

- pointer to p list

value of resistor in amnesic model

- amplitude of voltage source in branch

- value of voltage source in amnesic model

- value of current source in amnesic model

- frequency of source in branch
- value of element in branch

- auxiliary storage

- auxiliary storage
- indicates direction of source in branch

- source type

- array of time points

- indicates end of string

- branch type {RV, CI, etc.)

- array of node potentials

- index pointer

CIRCAL

V ar iable s

CONTENTS

I

NX

TABLE

TY

obtains variable in a location specified by a pointer
index

pointer to data read with RWORD

array of commands

argument of RWORD

-91-

Procedures

DECODE

PEKC HR

RT

RWORD

SETCT

SE THOW

converts BCD number into integer form
examines on line BCD item without "reading"
character table used by RWORD
reads BCD items on line
sets characters in character table

used by RWORD

TOlZK) + INPT

Variables

T1

TZ

V1

VZ

V3

branch type (RV, CI, etc.)
source type (sin, cos, u)
value of element in branch

amplitude of source in branch
frequency of source in branch

Procedure s

FREZ obtains blocks of storage registers from free

storage

DT
ELEMENT
5
L
Q
SAMPLE
SOURCE
VK

DYSOL

V ariable s

increment between successive time points

bits 0 through 5 in TYPE
index

index

argument of IVINIP

value of source at a particular point in time

bits 6 through II in TYPE

voltage across resistor in capacitor model; capacitor

through resistor in inductor model

MNIP

V ar i able s

C
DISAVED
ER
ERR 1
ERSV m

dummy argument used in procedure U
used for saving sum of currents at node
value of procedure ERR
temporary variable used in procedure U
saved value of the current error

-9Z-

ERX

ESAVE D

KC

KO

K1

K2

L

NIT

Q

UC

UG

U1

U2

value of the current error

used for saving node potentials

intermediate value of convergence constant
optimum value of convergence constant

value of convergence constant above upper limit

value of convergence constant below upper limit
index

number of iterations

time point index (also used to indicate errors)
ordinate at KC

value of procedure U
ordinate at K 1

ordinate at KZ

ERR

U

Procedure s

computes current error

computes points on the U(K) curve

•PRNT

Variables

F
HE AD

J
MA
MB
NAME
NUMBER

Q
TAIL
TS

array of voltage s to be plotted
bits 0 through 11 in last word of NAME
index

initial point to be plotted
total number of points to be plotted
BCQ pointer to array of graph identification
bits 6 through 17 of BCQ-converted integer
command (PLOT, PRINT, DISPLY}

bits 18 through Z9 in last word of NAME
array of time points to be plotted

NPLOT

NUMTOQ

XYPLOT

Procedure s

plots graph on typewriter
converts an integer to BCQ form

plots graph on CRT display

-93-

(25o)

i i

(21 O)),es_

/_ I = 1,2,

(230) _,_ set J(l)= 0"" 5.,_

(26o)_

(260) _ yes

convert item from I
(280) BCD to integer form)and store in J(I)

(310)

(300)

L
for I = O, I, ...6/_._

(320)

1330_ I fransfer to item I + 1 I

' ' I of switch below I

I

I not
I (34o)
I
I
I

SWITCH:

I=0 I=1 1=2,3, or5 1=4 1=6

(380) (4oo) (420) (46o) (440)

Fig. D.1 Flow Chart for CIRCAL

-94-

QRS $

.QRZ $

TRI $

TR2 $

TR3 $

TR5 $

TR6 $

TR7 $

BEGIN

INTEGER I,NX,TY $,

INTEGER COMPONENT CONTENTS $,

CONTENTS $=$ 0 $,

INTEGER ARRAY TABLE(IO),J(5) $,

INTEGER PROCEDURE RWORD,SETHOW,RT,SETCT,PEKCHR,DECODE,SGNON,

CHNCOM $,

SWITCH DOSW = TR2,TR3,TR5,TR5,TR7,TR5,TR6 $,

PRESET TABLE(O) = 314547646360C,214521433171C_474346636060C,

475131456360C,506431636060C,243162474370C,255121622560C $,

CR .BCDN. -60000100000055- $,

CS .ECDN. -60000100000073- $,

CT .BCDN. -60000100000074- $,

CU .BCDN. -60000100000034- $,

SETCTICONTENTSIRT),LOC CR(1),0,0,17,0,0,0) $,

SETCT(CONTENTS(RT),LOC CS(1),O,O,O,O,O,O) $,

SETCTICONTENTS(RT),LOC CT(1),O,O,O,O,O,O) $,

SETCT(CONTENTS(R[),LOC CU(1),O,O,O,O,O,O) $,

SETHC@(O,O,O) $,

PRINT F04 $,

IF (J(O) = CONTENTS(RWORD(RT,TY))) EQL 556060606060C

THEN GOTO TR1 $,

FOR I = 1 STEP i UNTIL 5

DO J(1) = 0 $,

FOR I = 1 STEP 1 UNTIL 5

DO IF CONTENTS(NX = RWORD(RT,TY)) EQL 556060606060C

THEN GOTO QRZ

ELSE J(1) = DECODE(NX) $,

IF CCNTENTS(PEKCHR(RT)) EQL 556060606060C

THEN NX = RWORD(RT,TY) $,

FOR I = 0 STEP i UNTIL 6

DO IF J(0) EQL TABLEII)

THEN GOTO DOSW(I+I} $,

PRINT FO3,J(O) $,

GOTO QRS $,

PRINT F02 $,

GOTO QRS $,

TOPOI(} $,

GOTO QRS $,

DYSOL4(} $,

GOTO QRS $,
.PRNTIIJ(O)gJ(2),J(3},J(4),J(5)) $,

GOTO QRS $,

SGNON(1) $,

GOTO ORS $,

PRINT F04 $,

CHNCOM(1) $,

F02 $ FORMAT (II6HTHE COMMANDS ARE//

5HINPUT/6HANALIZ/2OHPRINT F(NI,N2) MB MA /

19HPLOT F(NI,N2) MB MA/21HDISPLY F(N1,N2} MB MA /

5HERASE /4kQUIT //) $,

F03 $ FORMAT(/IH',A6,31H' IS NOT IN THE COMMAND TABLE. ,

19HHIT CARRIAGE RETURN /

37HFOR A LIST OF THE ALLOWABLE COMMANDS. /) $,

F04 $ FORMAT(IH) $,

END FINI

00010

00020

00030

00040

00050

00060

00070

00080

00090

CO100

00110

00120

00130

00140

00150

00160

00170

00180

00190

00200

00210

00220

00230

00240

00250

00260

00270

00280

00290

00300

00310

00320

00330

00340

00350

00360

00370

00380

00390

0040C

00410

00420

00430

00440

00450

00460

00470

00480

00490

00500

00510

00520

00530

00540

00550

00560

coll INPT, reod
N 1, 1st node (460)

' L : N2, 2ridnode
T1 ,T2,V, V2, V3,
other parameters

(560) _ (510)

generate plist from' I CIRCAL I
J free storage with 1(590)

I pointer LIST I

Cset parameters _ (&30)

1

ex©

J generote r

(650)

yes

(670)

mine the pointer NODE_
s the NI node bead exist?

(the number of

existing

(700)

ode bead with pointer NODE(N1) 1 (710)

set FIRST(NODE (N1))_

pointing to the tie pointJ (720)

; junction box with polnte_ J1 J (740)

•nction box in the node string I (750)

.set SIGN(J])= +I (770)

IST(JI) pointing to the P List_ (780)

Fig. D.2 Flow Chart for TOPO

(8oo)

(820)

pointer NODE(N2]
_oes the N2 node head exist?

(the number of
existing

I generate node bead with pointer NO[

l generate iunction box with pointerl

insert junction box in the node strl

set P.LIST(J2) _ointing to the P LI

L

-95-

yes

(850)

._set MOST = N2_

1
(N--- (_,0)

960)

t Ncul): NOOE(N2)

L

. (970)yes

et NC(J2)= NODE(N|)

-97-

SPEC$

BEGIN

DEFINE PROCEDURE TOP01() TOBE

BEGIN

INTEGER PROCEDURE FREZ St
REAL VltV2tV3,EPS St

REAL ARRAY T(200)tV{4200) St
INTEGER ARRAY DUMMY(150) S,
INTEGER N1,N2tTIPT2,L,MOST,TP,N,J S,

INTEGER ARRAY NODE(21) St
REAL COMPONENT E,DI St

INTEGER COMPONENT FIRSTtCOORD1,COORD2 S,

E S=S 0 St
DI S=$ 1 S,

FIRST S=S 2 St
COORD1S=S 3 S,

COORD2 S:S 4 St
INTEGER ARRAY LIST(50) St

INTEGER COMPONENT TYPEtSOTYPE S,
REAL COMPONENT PltP2,P3tP4,PS,P6,P7,P8 S,

TYPE S=S 0 St

SOTYPE S=S 1 S,
PI S=S 2 So

P2 S=S 3 So
P3 S=S 4 So
P4 S=S 5 So
P5 S=S 6 S,
P6 S=S 7 St
P7 S=S 8 So
P8 S=S 9 St
INTEGER ARRAY J1(50),J2(50) So
INTEGER COMPONENT NEXToNCtP.LIST So
REAL COMPONENT SIGN St
NEXT S=S 0 So
_C S=S 1 St
P,LIST S=$ 2 S,
SIGN S-S 3 So
COMMON DUMMYoNODEoLISTtJltJ2,M@STtTPtEPSoV*ToN St
NODE(O) = FREZ(.5) So
E(NODE(O)) = O, So
MOST = 0 St
TP = 212121212121C S,
PRINT GO St
FOR L = 0 STEP 1 UNTIL 49
DO BEGIN

INPT(NltN2oTloT2oVltV2oV3) $o
IF T1 EOL 606060606060C
THEN BEGIN

FOR J = 0 STEP 1 UNTIL MOST
DO IF NODE(J} EQL 0

THEN PRINT ALARM St
GOTO RETURN St
END So

IF N1EQL N2
THEN BEGIN

PRINT ERROR St
GOTO SPEC $,

00010
00020
00030
OO040
00050
00060
00070
00080
00090
00100
00110

00120

00130
00140

00150
00160
00170
00180

00190
00200

00210

00220
00230

00240
00250
00260
00270
00280
00290
00300

00310
00320
00330

00340

00350
00360
00370
00380
00390
00400

00410
00420

00430

00440
00450
00460

00470
00480
00490
00500
00510
00520
00530
00540
00550
00560
00570

-98-

ERROR $

GO $

ALARM $

END $,

LIST(L) = FREZ(IO) $,

P6(LIST(L)) : Vl $,

P2(LIST(L)} = V2 $,

PS{LIST(L)) = V3 $,

TYPE(LIST{L)} = T1 $,

SOTYPE(LIST(L)) = T2 $,

IF N1 NEQ 0

THEN BEGIN

IF NODE(N1) EQL 0

THEN BEGIN

IF N1 GRT MOST

THEN MOST = NI $,

NODE(N1) : FREZ(5) $,

FIRST(NODE(N1}) = TP $,

END $,

JI(L) = FREZ(4) $,

NEXT(JI(L)) = FIRST(NODE(NI)) $,

FIRST(NODE(N1)) = JI(L) $,

SIGN(JI(L)) = +1. $,

P.LIST(JI(L)) = LIST(L) $,

END $,

IF N2 NEQ 0

THEN BEGIN

IF NODE(N2) EQL 0

THEN BEGIN

IF N2 GRT MOST

THEN MOST : N2 $9

NODE(N2) : FREZ{5} St

FIRST(NODE(N2)} = TP $t

END St

J2IL) = FREZ(4) $t

NEXT(J2(L)) = FIRST(NODE(N2)) $t

FIRST{NODE(N2)) = J2(L} St

SIGN(J2(L)) = -I. $t

P.LIST(J2IL)) = LIST{L) St

END $,

IF N1 NEQ 0

THEN NC(JI(L}) = NODE(N2} St

IF N2 NEQ 0

THEN NC(J2(L)) = NODEINI) $,

END $,

FORMAT (/24HTHAT'S NOT A CONNECIION. /} $,

FORMAT (/24HTYPE BRANCH DESCRIPTION. /) $t

FORMAT (/32HNETWORK NOT CORRECTLY DESCRIBED.

/) St END $t

END FINI

00580

00590

00600

00610

00620

00630

00640

00650

00660

00670

00680

00690

00700

00710

00720

00730

00740

00750

00760

00770

00780

00790

00800

00810

00820

00830

00840

00850

00860

00870

00880

00890

00900

00910

00920

00930

00940

00950

00960

00970

00980

00990

01000

01010

01020

01030

01040

01050

-99-

read

N1, N2: nodes
TI: branch type
T2: source type
Vl, V2, V3, :
other parameters

I

(7O)

left justify T1 J (90)

(310) (320)

= SIN ? T2

(33O)

COS?

(340)

T2 3

T2 =I (350)

return to J

Fig. D.3 Flow Chart for INPT

-I00-

LINE $

BEGIP

DEFINE PROCEDURE INPT(NI,N2,TI,T2,VI,V2tV3) WHERE INTEGER NI,

N2.TI.T2 $,
REAL VI.V2,V3 $. TOBE

BEGIN
READ LINE,NItN2,TI,VI,V2,T2,V3 $,

FORMAT (2129A6,2FS,0tA6_F8.0) $.

IF T1 EQL 606060605131C

THEN T1 = 513160606060C
ELSE IF T1 EQL 606060605165C

THEN T1 = 516560606060C
ELSE IF T1EQL 606060606051C

THEN T1 = 516060606060C
ELSE IF T1 EQL 606060602331C

THEN TI = 233160606060C

ELSE IF TI EQL 606060602365C
THEN T1 = 236560606060C

ELSE IF T1 EQL 606060606023C
THEN TI = 236060606060C

ELSE IF T1 EQL 606060604331C

THEN T1 = 433160606060C
ELSE IF T1EQL

606060604365C
THEN T1 =

436560606060C
ELSE IF II EQL

606060606043C
THEN T1 =

436060606060C $,

IF T2 EOL 606060623145C
THEN T2 = 2

ELSE IF T2 EOL 606060234662C
THEN T2 = 3

ELSE T2 © 1 $,

END $,

END FINI

00010

00020
0OO3O

0004O
00050

00060
00070

0OO8O

00090
00100

00110
00120

00130
00140

00150
00160

00170
00180

00190
00200

00210

00220
00230

00240
00250

00260
00270

00280

00290
00300

00310

00320
00330

00340
00350

00360

00370
00380

(53O)

4_0)

(45o)

(480)

4490)

I read

DT: time increment

N: no. of po|nts to
be computed

(460) //_ (47O)

..,N:2oo)

1 initial time poin_)=0

forJ=l,2, ...N-1 I

compute

T(.I) = T(J-I) + OT

4510) (for all nodes set potential E(NODE) = 0_

7 for---all time points [J=0,1 N-']

l -- [L=1,2, MOST]for all r_les ...

/"set index pointer_

4s7O)_ = Fi_ST4NO0_

(58O)_

(610) _ .._ (630)

" "_J = 0_et res. PI = DT/2PG)

Y (64o)
(680) _ _et P3 = :'4 = P7 = 0 _

et res. PI = DT/2PG _'_ jr

(690)_

r_oo)

J compute res. voltage
1

VR = E(NODE) - E(NC) - P3

(7"2o)

I

1°-" IP7 = (P7 + VR) + VR

I
I
I
I
I
II
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

(76o) _ y_ (78o)

no (800)
(840) "_no (8(

et res. P1 = 2PG/D s_et P3= P4= P8= 0

(86o)

VR = DT/2PG (E(NODE) - E(NC) - P3)

(9°°) _
compute

P8 = (P8 +VK) + VR

(92o)

(set current source P4 = -P8_

_yes

no (970)1

_et P3 = P4 =0)

(99O) 1

.
(1010) J _ (]030)

set SAMPLE = 0)

0o6o) _.o 1
rransto
FUNCTION (SOTYPE) (_
confute

SAMPLE at T(J) ,_

1 ,
-I

I
I

'i
I
I
I
I
I
I
I
I

SOTYPE =

1
J computeSAMPLE = (

Fig. D.4 Flow Chart for DYSOL

-101-

(1150)_ (1160)

- SOURCE "V" _et P3= P3÷ SAMPLE:)

(1170) _ (1180)

_"SOURCE ","_et P4= P4+ SAMPLE_

t
(12oo) [

_proceecl to
[.next node

transfer to MNIP
with Q, return
with Q, solution

(12_ yes

(1300) _ _o
_r all L set

(J,L) = E(NODE(L))_

i!

007O)

(1270)#

1,eto,o'o I

SOTYPE = 2 SOTYPE = 3

_ (1100) _ (1130)

compute compute

SAMPLE=Sin J ISAMPLE=Const

-103-

LPI S

BEGIN

DEFINE PROCEDURE DYSOL4() TOBE
_EGIN
REAL ARRAY T{200)tV(4200) St

REAL EPStDTtSAMPLEtVR St

INTEGER ARRAY DUMMY(150) S,
INTEGER MOSTtTPtNtXtLtQtJ St

INTEGER ARRAY NODE(21} $,
REAL COMPONENT EtDI St
INTEGER COMPONENT FIRSTtCOORD1,COORD2 St

E $:S 0 St

DI S:S I St
FIRST S=S 2 St

COORDI S=$ 3 St

COORD2 S=$ 4 $,
INTEGER ARRAY LIST(50) $,

INTEGER COMPONENT TYPEtSOTYPEtELEMENTtSOURCE $,

REAL COMPONENT PltP2tP3tP4,PStP6,P7tP8 St
PACK 77C30,30,5PECIAL COMPONENTS ELEMENT St
PACK 77C24t24tSPECIAL COMPONENTS SOURCE St
ELEMENT $=$ SOURCE $:S 0 St

TYPE S:$ 0 St
SOTYPE S=$ i St
Pl $=S 2 $,

P2 S=$ 3 St
P3 $=$ 4 $,

P4 S=S 5 $,
P5 $=S 6 $,
P6 S=S 7 S J

P7 $=S 8 St
P8 S=$ 9 $,
INTEGER ARRAY Jl(50)tJ2(50} So

INTEGER COMPONENT NEXTtNCtP.LIST SP

REAL COMPONENT SIGN St

NEXT S=S 0 5,

NC $=S I St
P.LIST $=S 2 $9
SIGN S=$ 3 St

COMMON DUMMYtNODEtLISTtJItJ2tMOSTtTPtEPS,V,TtN St

SWITCH FUNCTION = UtStC St
Q = 0 $,
_RINT LABLE St
READ INFOtDTtN St
IF N GRT 200
THEN N = 200 S,
T(O) = 0 S,
FOR J - 1 STEP i UNTIL N-1
DO T(J) = T(J-I)+DT S,
FOR L -- 0 STEP 1 UNTIL MOST

DO E(NODE(L)) = 0 St

FOR J -- 0 STEP 1 UNTIL N-1

DO BEGIN
FOR L = 1 STEP 1 UNTIL MOST

DO BEGIN

X = FIRST(NODE(L}} S,
IF SIGN(X) NEQ +1 AND NC(X) NEO NODE(O)

00010

00020
0O03O
00040

00060
00070

00080
00090

00100
0O110
00120

00130

00140
00150

00160

00170
00180

00190
00200

00210
00220

00230
00240
OO25O
00260
00270
00280

00290
00300

00310
00320

00330
00340

00350
00360

00370

00380
00390
00400

00410

00420

00430
00440
00450

00460

00470

00480
00490
00500

00510
00520

00530

O0540
00550

00560
00570
00580

-104-

c $

s $

US

SKIP $

THEN GOTO CONTINUE s,

IF ELEMENT(P.LIST(X)} EQL 23C

THEN IF J EQL 0

THEN BEGIN

PI(P.LIST(X)) = DTIP6(P.LIST(X))/2 $.

P3(P.LIST(X)) = P4(P.LIST(X)) = PT(

P.LIST(X)) = 0 $,

END

ELSE BEGIN"

Pl(P.LIST(X)) = DT/P6(P.LIST(X))/2 $,

P4(P.LIST(X)) = 0 $9

VR = E(NODE(L))-E(NC(X))-P3(P.LIST(X)

) $9

PT(P°LIST(X)) = PT(P.LIST(X))+2_VR $9

P3(P.LIST(X)) = PT(P°LIST(X)} $9

END

ELSE IF ELEMENT(P°LIST(X)} EQL 43C

THEN IF J EQL 0

THEN BEGIN

PI(P,LIST(X)) = 2*P6(P,LIST(X))/

DT St

P3(P.LIST(X)) = P4(P.LIST(X)) =

P8(P.LIST(X)) = 0 $,

END

ELSE BEGIN

Pl(P.LIST(X)) = 2_P6(P.LIST(X))/

DT $,

VR = (E(NODE(L))-E(NC(X))-P3(

P.LIST(X)})_DT/P6(P.LIST(X))/2

$9

PS(P°LIST(X)) = 0 $t

P8(P.LIST(X)) = P8(P.LIST(X))+2_

VR $,

P4(PoLIST(X)) = -PB(P.LIST(X))

$9

END

ELSE IF ELEMENT(P.LIST(X)) EQL 51C

THEN BEGIN

PS(PoLIST(X)) = P4(P.LIST(X)) =

0 St

PI(P.LIST(X)) = P6(P.LIST(X)) St

END $t

IF SOURCE(P°LISTIX)) EQL 60C

THEN BEGIN

SAMPLE = 0 St

GOTO CONTINUE St

END St

GOTO FUNCTIONISOTYPEIP°LISTIX))) $t
SAMPLE = P2(P.LISTIX))_COS(6.2831852_P5(P. LIST(

X))_T(J)) $,

GOTO SKIP $t

SAMPLE = P2(P.LIST(X))_SIN(6.2831852_P5(PoLIST(

X))_T(J)) $t

GOTO SKIP $t

SAMPLE = P2(P°LIST(X)) St

SAMPLE = SAMPLE_SIGN(X) $,

IF SOURCE(P.LIST(X)) EQL 65C

THEN P3(P.LIST(X)) = P3(P.LIST(X))+SAMPLE

00590

00600

00610

00620

00630

00640

00650

00660

00670

00680

00690

00700

00710

00720

00730

00740

00750

00760

00770

00780

00790

00800

00810

00820

00830

00840

00850

00860

00870

00880

00890

00900

00910

00920

00930

00940

00950

00960

00970

00980

00990

01000

01010

01020

01030

01040

01050

01060

01070

01080

01090

01100

01110

01120

01130

01140

01150

01160

-105-

ELSE IF SOURCE(P.LIST(X)) EQL 31C

THEN P4(P.LIST(X)) : P4(P.LIST(X))+SAMPLE

$,

CONTINUE $ IF (X = NEXT(X)) NEQ TP

THEN GOTO LP1 $1

END $,

Q = J $,

MNIP(Q) $,

IF Q EQL -I

THEN BEGIN

PRINT BANANAS,J $,

GOTO RETURN $,

END $9

THROUGH $ FOR L = 0 STEP I UNTIL MOST

DO V(J_2I+L) = E(NODE(L)) $,

END Sm

LABLE $ FORMAT (/35HTYPE TIME INCREMENT, NO, OF POINTS, ,

19H ONE ITEM PER LINE. /) $,

INFO $ FORMAT {FIO.O/13} St

BANANAS $ FORMAT (/25HCONVERGENCE NOT REACHED. ,13,

22H POINTS WERE COMPUTED. /) $,

END $,

END FINI

01170

01180

01190

01200

01210

01220

01230

01240

01250

01260

01270

01280

01290

01300

01310

01320

01330

01340

01350

01360

01370

01380

01390

01400

FIND STARTING

POINTS K1 _ K2

SUCH THAT

K1 > K2

K[< K2 < K I
2

enter with time/
oolnt no. Q

(4oo)

set _f/:of iterations_NIT = 0 //

10)

7ei,430)

set inner lot K2 = .5outer ot K1 = 1

(450)

.-_ c°mpute U2 = U(K2) Iul = U(KI)

k
_ (470)

NO

I compute

t
i

P

,_ (560)

no

J compute

(49O)

K2= KI_U2= UI

, $ (510)

KI = 2KI

Ul U(KI)

(58O)

KI= Kj_U1

i (600)

K2 = I/2 K2

U2 = U(K2)

T
J coml_ute new inn

_/KI-i
KC= K2 _UI -I,

I K_LmK2te i_

1
U2 = 13

(K1- K2) _.

comrute or,! _o

K0=, (Ki

I compute and save _re_ERSV = ERR(]

C set NIT = Nil

_or all nodes i

et ESAVED = E(N_

DISAVED DI(N

for all nodes compute

E(NODE) = E(NODE) + I_

I compute new error I_

r all nodes
set E(NODE) = ES

DI(NODE) = DI,

1

64O)

(650)

(66O)

(67O)

J compute

-J Ul = U(KI)

(710)

I
(74O)

(750)

I (770)

(82o)

Z0 • DI(NODE)

(84o)
x = ERR()J

I

(950)

et ERSV= ERX

I re, nto/

FUNCTION SUBPROGRAM U(G)

enter function /

u(c) /

(12oo) _
compute
ERRI = ERR()

(1210)

l for all nodes set
ESAVED = E(NODE)
DISAVED = DI(NODE)

026o) i

I for oil nodes compute I
E(NODE) = E(NODE) 4-C. DI(NODE)

(1280) i

I compute function
1

UG = ERRI - ERR(),
I

(1290) _ .

all nodes reset "_

NODE) = ESAVED 'i

I(NODE) = DISAVEDJ

(i_o) I

I lace value at functionin occumulatoe

Fig. D.5 Flow Chart for MNIP

- 107-

FUNCTION SUBPROGRAM ERR(_)_

_enter function/ERR() /

for all nodes

(etsumofou_._a,nodeD,_ (I030)

et pointer X = FIRST(NODE) (1040)

J

Jcamp_e JDI = DI + current of branch (X) (1050)

I
I
I
I

×: NEXT@,0_01_u__I
|

) on next node, J II

I

compute function (11 I0)

ER=_. (Dl) 2

I lace value of functionin accumulator (1140)

-I09-

HEAD S

REPEAT $

D.C. $

BEGIN

DEFINE PROCEDURE MNIP(Q) WHERE INTEGER Q TOBE

BEGIN
REAL PROCEDURE ERRtU S,

REAL ER,EPS,KltK2,KC,U1,UZ,UC,KO,ERSV,ERX $,
REAL ARRAY T(2OO),VI4200),ESAVED(21),DISAVED(21) $,
INTEGER MOST,TP.L,X,N,NIT S,

INTEGER ARRAY DUMMY(150) St
INTEGER ARRAY NODE(21) St

REAL COMPONENT E,DI St
INTEGER COMPONENT FIRST,COORD1,COORD2 S,

E S=S 0 St
DI $=$ 1 $,
FIRST S=$ 2 St
COORD1 $=$ 3 St
COORD2 S=$ 4 St
INTEGER ARRAY LIST(50) $,
INTEGER COMPONENT TYPEtSOTYPE St
REAL COMPONENT PltP2tP3tP4tPStP6tP7tP8 St
TYPE $=$ 0 St

SOTYPE $=$ 1 St
Pl S=$ 2 St

P2 $:$ 3 St

P3 $=S 4 St
P4 S=S 5 St
P5 $=$ 6 St
P6 S=$ 7 St
P7 $=$ 8 St
P8 S=$ 9 St
INTEGER ARRAY J1(50)tJ2(50) St
INTEGER COMPONENT NEXT_NCtPoLIST St

REAL COMPONENT SIGN St
WEXT S=$ 0 St
_C $=$ 1 St
PoLIST $=$ 2 St
SIGN $=$ 3 St
COMMON DUMMYtNODEPLISTtJItJ2_MOSTtTPtEPStVtTtN St

PRESET EPS = ,00001 St
NIT = 0 $,
IF Q GRT 0

THEN GOTO SWING S,

K2 = ,5 St
K1 = I St

U2 : U(K2) S9
UI = U(KI) $*
IF U1GRT 0
THEN BEGIN

K2 = KI $,

U2 = U1 S,
KI = 2tKl St

UI = U(K1) St
GOTO REPEAT S,
END

ELSE
IF U2 LES 0

THEN BEGIN

00010
00020
00030
OOO40
00050
00060
00070
00080
00090
00100

00110
00120

00130

00140
00150

00160

00170
00180

00190
00200

00210

00220
00230
00240

OO250
00260

00270

00280
00290
00300

00310
00320
00330
00340
00350

00360

00370
00380
00390
00400
00410

00420
00430

00440
00450

00460
00470
00480
00490
00500
00510
00520
00530
00540

00550
00560
00570

-II0-

CODA $

SWING $

FINE $

BRIDGE $

KI = K2 $,

UI = U2 $,

K2 = K2/2 $,

U2 = U(K2) $9

GOTO D.C, $9

END $,

KC = K2-((KI-K2)/(UI-U2))_U2 $9

JC = U(KC} $9

<1 = K2-((KC-K2)/(UC-U2))*U2 $9

K2 = KC $9

U2 = UC $9

IF 2_((KI-K2)/(KI+K2)) GRT e01

THEN BEGIN

UI = U(KI) $,

GOTO CODA $9

END $,

KO = (KI+K2)/4 $,

ERSV = ERR() $,

NIT = NIT+I $9

FOR L = i STEP I UNTIL MOST

DO BEGIN

ESAVED(L} = E(NODE(L}) $,

DISAVED(L} = DI(NODE(L)) $9

END $9

FOR L = I STEP I UNTIL MOST

DO EINODEIL)) = E(NODE(L))+KO_DIINODE(L)) $9

IF ERSV LES (ERX = ERR(})

THEN BEGIN

FOR L = I STEP I UNTIL MOST

DO BEGIN

E(NODE(L)) = ESAVED(L) $,

DI(NODE(L)) = DISAVED(L} $9

END $,

GOTO HEAD $,

END $,

IF ERX LES EPS

THEN GOTO RETURN $,

ERSV = ERX $,

GOTO FINE $,

DEFINE REAL PROCEDURE ERR() TOBE

BEGIN

REAL ER $9

FOR L = 1 STEP 1 UNTIL MOST

DO BEGIN

DI(NODE(L)} = 0 $'

X = FIRST(NODE(L}) $,

DI(NODE(L}) = DI(NODE(L))+(E(NC(X})+SIGN(X)wP3(

P,LIST(X))-E(NODE(L}})/PI(P,LIST(X))+SIGN(X)W

P4(P,LIST(X}_ $9

IF (X = NEXT(X}} NEQ TP

THEN GOTO BRIDGE $,

END $,

ER = O $,

FOR L = i STEP i UNTIL MOST

DO ER = ER+DI(NODE(L))_DI(NODE(L}) $,

ER = ER $9

END $,

00580

00590

00600

00610

00620

00630

00640

00650

00660

00670

00680

00690

00700

00710

00720

00730

00740

00750

00760

00770

00780

00790

00800

00810

00820

00830

00840

00850

00860

00870

00880

00890

00900

00910

00920

00930

00940

00950

00960

00970

00980

00990

01000

01010

01020

01030

01040

01050

01060

01070

01080

01090

01100

01110
01120

01130

01140

01150

-111-

DEFINE REAL PROCEDURE U{C) WHERE REAL C TOBE

BEGIN
REAL ERRltUG $,
ERR1 = ERR(} St

FOR L = 1 STEP 1 UNTIL MOST

DO BEGIN
ESAVEDIL) = EINODE{L)) St

DISAVED(L) = DI(NODE(L)) $,

END $,
FOR L = I STEP I UNTIL MOST

DO EINODE{LI) = EINODE|L)I+C*DI(NODEILI) St
UG = ERR1-ERR() $,

FOR L = 1 STEP I UNTIL MOST

DO BEGIN
EINODE(LI) = ESAVEDIL) $,
DI(NODE(L}) = DISAVED(L) St

END St

UG = UG $,
END 5,

END St

END FINI

01160
01170
01180
01190
01200
01210
01220
01230
01240
01250
01260
01270
01280
01290
01300
01310
01320

01330
01340
01350
01360
01370
01380
01390

-I12-

(29o)

(2OO)

(250)

FPlOt graph of \
vs TS on CRT J

/

L

enter with

Q: command

NI: 1st node

N2: 2rid node

MB: no. of points to be plotted

MA: first point to be plotted

@_ (220)

T , I return to I

I_ tol I c-_cA_ I
IBCQformandstore I
I for printing I

_yes _/_et MB = N, the total

(270) c,,_-- -_/,,.,_--_--*wl_.numbe r of points compute) (280)

yo L

Lt MB = N - MA_

store time points of the
(320) array T into TS starting

with the MAth entry in T

I compute voltage across nodes

N1 and N2 from the array V

of node potential and store in F

DISPLY _60) and (410)

I ret_ to I

Fig. D.6 Flow Chart for PRNT

-113-

SO S

SI S

$2 S

$3 S

$4 S

BEGIN

DEFINE PROCEDURE .PRNTI(Q,N1,N2,MB,MA) WHERE INTEGER Q,NI,N2,

MB,_A TOBE

BEGIN

INTEGER PROCEDURE NUMTOQ $,

REAL ARRAY T(200),TS(200),F(200),V(4200) $,

REAL EPS $,

INTEGER NAME,NgMOST,TPtJ $9

INTEGER ARRAY NODE(21)tJI(50),J2(50),LIST(50)tDUMMY(IS0}

St

INTEGER COMPONENT HEAD,TAILtNUMBER $9

HEAD $=$ TAIL $=$ 2 St

NUMBER $=$ 0 St

PACK 7777C249249SPECIAL COMPONENTS HEAD St

PACK 7777C6969SPECIAL COMPONENTS TAIL $,

PACK 7777C189189SPECIAL COMPONENTS NUMBER St

NAME .BCQ. /GRAPH OF V(,)/ St

COMMON DUMMY,NODEgLIST,JltJ2tMOST,TPtEPStVtTtN St

IF NI EQL 0 AND N2 EQL 0

THEN BEGIN

PRINT SO $9

GOTO RETURN St

END $9

HEADINAME) = NUMBER(NUMTOQ(NI)} $9

TAIL(NAME) = NUMBER(NUMTOQ(N2)) $t

IF MB EQL 0

THEN MB = N $,

IF MA+MB GRT N

THEN MB = N-MA St

FOR J = O STEP i UNTIL MB-I

DO BEGIN

TS(J) = T{J+MA} St

F(J) = V((J+MA)_21+NI)-V{(J+MA}_21+_) St

END $,

IF Q EQL 474346636060C

THEN BEGIN

NPLOT(F,TStMB-1,NAME) $,

GOTO RETURN St

END

ELSE IF Q EQL 243162474370C

THEN BEGIN

XYPLOTIFgTStMB-ItNAME) St

GOTO RETURN $9

END $,

PRINT S1,N1,N2 $,

PRINT S2 $,

FOR J = 0 STEP 2 UNTIL MB-I

DO PRINT S3,TS(J),F(J),TS(J+I)tF{J+I) $,

PRINT $4 St

FORMATI/21HNOT ENOUGH ARGUMENTSe /} $,

FORMAT(IIII/35X, IOHLIST OF VI,I2tlH,tI2,IH) III) St

FORMATI3X,2(BX,4HTIME,14XtBHFUNCTION,6X) //I St

FORMATI4IIPE20.7}) St

FORMAT(IH ////II/) St

END $,

END FINI

00010

00020

00030

00040

00050

00060

00070

00080

00090

00100

00110

00120

00130

00140

00150

00160

00170

00180

00190

00200

00210

00220

00230

00240

00250

00260

00270

00280

00290

00300

00310

00320

00330

00340

00350

00360

00370

00380

00390

00400

00410

00420

00430

00440

00450

00460

00470

00480

00490

00500

00510

00520

00530

00540

00550

00560

00570

00580

lo

Z.

.

o

o

o

o

.

o

10.

11.

lZ.

13.

14.

15.

REFERENCES

Allen, D.N. DeC., Relaxation Methods, McGraw-Hill Book Co.,
Inc., New York, 1954.

Birkhoff, G., and Diaz, S.B., "Nonlinear Network Problems",
Quarterly of Applied Mathematics, Vol. 13, January, 1956,

pp. 431-443.

Black, A.N., and Southwell, R.V., '_P_elaxation Methods Applied
to Engineering Problems", Proceedings of the Royal Society of
London A, Vol. 164, 1938.

Corbato, F.J., et al, Compatible Time-Sharing System,
M.I.T. Press, _"_a-m-_r{dge, Mass., 1963.

Dennis, J.B., Distributed Solution of Network Programmin K
Problems, Internal Memorandum.

Dennis, $. B., Mathematical Programming and Electrical

Networks, M.I.T. Press and John Wiley and Sons, Inc.,
New York, 1959.

Dertou_os, M.L., Threshold Logic: A Synthesis Approach,
M.I.T. Press, Cambridge, Mass., 1965

Desoer, C.A., and Katzenelson, J., 'rNonlinear RLC Networks",

Bell System Technical Journal, Vol. 44,No. 1, January 1965,
pp. 161-198.

Duffin, R.S., "Nonlinear Networks IIa",Bulletin of the American

Mathematical Society, Vol. 53, October, 1947, pp. 963-971.

Duffin, R. S. "Nonlinear Networks IIb" Bulletin of the American

Mathematical Society, Vol. 54, 1948, pp. 119-1Z7.

Fadeeva, V.N., Computational Methods of Linear Algebra,
Dover Publications, Inc., New York, 1959.

Fenves, Logcher, and Monch, STRESS Reference Manual,
M.I.T. Press, Cambridge, Massachusetts.

Guillemin, E.A., Introductory Circuit Theory, John Wiley
and Sons, Inc., New York, 1960.

Guillemin, E.A., Synthesis of Passive Networks, 5ohn Wiley
and Sons, Inc., New York, 1962.

Hildebrand, F.B., Introduction to Numerical Analysis, McGraw-

Hill Book Co., Inc., 1956.

-115-

16.

17.

18.

19.

20.

21.

Z2.

23.

Z4.

25.

26.

Z7.

28.

-II6-

REFERENCES (Cont.)

Hildebrand, F.B., Methods of Applied Mathematics, Prentice-

Hall, Inc., EnglewoodCliffs, 1961.

Katzenelson, J. and Seitelman, L.M., "An Iterative Method for

Solution of Nonlinear Resistor Networks", To be Published.

Lee, H.B., Notes for M.I.T. Course 6.561.

Lee, H.B., Private Communication, August 3, 1965.

McCracken, D.D., A Guide to ALGOL Programming, John

Wiley and Sons, Inc., New York, March 1964.

Meyer, C.S., "A Digital Computer Representation of the Linear
Constant-Parameter Electric Network, " M.S. Thesis, Depart-

ment of Electrical Engineering, M.I.T., 1960.

Minty, G. "Solving Steady-State Nonlinear Networks of 'Monotone'

Elements", IRE Transactions on Circuit Theory, June, 1961.

Roos, D. and Miller, C.L., The Internal Structure of COGO-90,

Research Report R64-5, School of Engineering, M.I.T.,
February, 1964.

Ross, D.T., "AED-0 Programming Manual Preliminary Release

1 through 4',' Internal Memorandum, 1964.

Scarsborough, J.B., Numerical Mathematical Analysis,
John Hopkins Press, Baltimore, 1958.

Southwell, R.V., "Stress Calculation in Frameworks by The

Method of Systematic Relaxation of Constraints", I and II.,

Proceedings of the Royal Society of London A, Vol. 164, 1938.

Zadek, L.A. and Desoer, C.A., Linear System Theory: The
State Space Approach, McGraw-Hill, New York.

Zimmerman, H.J., and Mason, S.J., Electronic Circuit Theory,

John Wiley and Sons, Inc., New York, 1960.

